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Abstract. Multifactorial optimization (MFO) is a recently proposed
paradigm for evolutionary multitasking that is inspired by the possi-
bility of harnessing underlying synergies between outwardly unrelated
optimization problems through the process of implicit genetic transfer.
In contrast to traditional single-objective and multi-objective optimiza-
tion, which consider only a single problem in one optimization run, MFO
aims at solving multiple optimization problems simultaneously. Through
comprehensive empirical study, MFO has demonstrated notable perfor-
mance on a variety of complex optimization problems. In this paper,
we take a step towards better understanding the means by which MFO
leads to the observed performance improvement. In particular, since (a)
genetic and (b) cultural transmission across generations form the crux
of the proposed evolutionary multitasking engine, we focus on how their
interaction (i.e., gene-culture interaction) affects the overall efficacy of
this novel paradigm.

1 Introduction

Evolutionary algorithms (EAs) are generic population-based metaheuristics for
optimization that employ mechanisms inspired by biological evolution, namely,
Darwinian principles of Natural Selection or Survival of the Fittest [1]. Through
computational analogues of sexual reproduction and mutation, EAs are capa-
ble of exploring and exploiting promising regions of the search space, with the
survival pressure encouraging evolution of the entire population towards fitter
regions of the objective function landscape [2]. In the literature, EAs have demon-
strated powerful search capability and have been successfully applied on a wide
variety of real-world problems [3].

Over the past few decades, EAs have attracted much research attention, with
several variants proposed for single-objective optimization [4], multi-objective
optimization [5], and many-objective optimization [6]. It is worth noting that
the majority of these works focus on efficiently dealing with only a single prob-
lem at a time. Seldom has an attempt been made to multitask, i.e., to solve
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multiple optimization problems (or multiple tasks) simultaneously using a sin-
gle population of evolving individuals. It is only very recently that A. Gupta et
al. have proposed a new paradigm, labeled multifactorial optimization (MFO)
[7], that attempts to harness the intrinsic potential for evolutionary multitasking
possessed by population-based search strategies (here the term 'multifactorial'
is used to imply that every task contributes a different factor influencing the
evolution of the population). For example, consider a scenario where two pop-
ular benchmarks from continuous optimization, such as the Rastrigin function
and the Ackley function, are to be solved simultaneously. In such cases, evolu-
tionary multitasking provides the scope for autonomously exploiting underlying
synergies (or what we term as the latent genetic complementarities [7]) between
otherwise independent tasks, through the process of implicit genetic transfer.

To realize the MFO paradigm, a novel algorithm, namely, the multifactorial
evolutionary algorithm (MFEA), has also been proposed in [7]. The MFEA is
inspired by bio-cultural models of multifactorial inheritance [8], which contend
that the complex developmental traits among offspring are influenced by gene-
culture interactions. The computational equivalent of multifactorial inheritance,
for the purpose of efficient evolutionary multitasking, is established by consid-
ering each optimization task to create a distinct environment in which offspring
can be reared. In other words, from the standpoint of the MFEA, multitasking
leads to the coexistence of multiple blocks of cultural bias (or memes [9]), one
corresponding to each task. The subsequent evolution of encoded individuals in
the composite landscape is simulated through an interplay of genetic and cultural
transmission, where cultural aspects are manifested by two major components
of the MFEA acting in concert, namely, (a) non-random or assortative mating :
which states that individuals prefer to mate with those sharing a similar cultural
background, and (b) vertical cultural transmission: which states that the pheno-
type of an offspring is strongly influenced by that of its parents. While the basic
structure of the proposed algorithm is similar to a classical EA, it is augmented
by the aforementioned features that are borrowed from the models of multifac-
torial inheritance. Using the proposed algorithm, the MFO paradigm has been
thoroughly studied in [7] via several computational experiments. These included
multitasking across continuous optimization tasks, or combinatorial optimization
tasks, or even a mixture of combinatorial and continuous tasks (cross-domain
multitasking). In the majority of cases, MFEA demonstrated noteworthy perfor-
mance by accelerating convergence for complex optimization tasks.

Bearing in mind the need for future algorithmic developments in the field of
MFO, we find it essential, at this juncture, to investigate and fully acknowledge
the key contribution of gene-culture interaction while designing effective evolu-
tionary multitasking engines. To this end, in this paper, we present a variant of
the MFEA, labeled as polygenic evolutionary algorithm (PGEA), which curtails
the cultural aspects of the evolutionary process as are manifested in the mod-
els of multifactorial inheritance. On comparing the performance of the MFEA
and the PGEA on the same set of benchmark instances, it becomes possible
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to decipher the benefits to the multitasking procedure provided by gene-culture
interaction.

The remainder of the paper is organized as follows. Section II covers the
preliminaries. It introduces the basic concepts of MFO, describes the MFEA,
and presents an overview of cultural transmission in multifactorial inheritance.
In Section III, we describe the PGEA and discuss our strategy for investigat-
ing and verifying the efficacy of the cultural aspects of the MFEA. In Section
IV, computational experiments are carried out on a variety of benchmark func-
tions from continuous optimization. These serve the purpose of highlighting the
key contribution of gene-culture interaction towards effective evolutionary mul-
titasking. Finally, Section V concludes the paper by summarizing the presented
work.

2 Preliminaries

In this Section, we present an overview of the basic concepts in evolutionary
multitasking, as have been proposed in [7].

2.1 Multifactorial Optimization (MFO)

Consider a scenario where K distinct optimization tasks are presented simul-
taneously to a single evolutionary solver. Let the jth task be denoted as Tj ,
and the dimensionality of its search space Xj be Dj . Without loss of gener-
ality, all tasks are assumed to be minimization problems, with the objective
function of task Tj being given by fj : Xj → R. In such a setting, MFO is
defined as an evolutionary multitasking paradigm that builds on the implicit
parallelism [22] of population-based search with the aim of concurrently find-
ing {x1,x2, · · · ,xK} = argmin{f1(x), f2(x), · · · , fK(x)}. Here, xj denotes a
feasible solution in Xj . Note that each fj is treated as an additional factor in-
fluencing the whole evolutionary process. For this reason, the composite problem
is referred to as a K-factorial problem.

The fundamentals of designing an EA are based on the Darwinian principle
of natural selection. Hence, in order to develop a suitable algorithm for MFO,
it is necessary to first conceive a valid measurement to evaluate the fitness of
individuals in a multitasking environment. To this end, the following set of prop-
erties are defined for every individual pi, where i ∈ 1, 2, . . . , |P |, in a population
P :

– Factorial Rank : The factorial rank rij of pi on task Tj is simply the index of
pi in the list of population members sorted in ascending order with respect
to fj .

– Scalar Fitness: The list of factorial ranks {ri1, ri2, · · · , riK} of an individual
pi is reduced to a scalar fitness ϕi based on its best rank over all tasks; i.e.
ϕi = 1/min{ri1, ri2, · · · , riK}.
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– Skill Factor : The skill factor τi of pi is the one task, amongst all other tasks
in MFO, on which the individual is the most effective, i.e. τi = argminj{rij},
where j ∈ {1, 2, · · · ,K}.

Based on the definition of scalar fitness, the comparison between individuals
can be achieved in a straightforward manner. For instance, an individual pa is
considered to dominate individual pb in multifactorial sense simply if ϕa > ϕb.

Also, it is clear that the aforementioned fitness assignment and comparison
procedure guarantees that if an individual p∗ maps to the global optimal of
any task, then, ϕ∗ ≥ ϕi for all i ∈ {1, 2, · · · , |P |}. Therefore, the evolutionary
environment built under the above definitions is indeed compatible with the
ensuing definition of multifactorial optimality.

– Multifactorial Optimality : An individual p∗ is considered optimum in multi-
factorial sense iff ∃j ∈ {1, 2, · · · ,K} such that f∗j ≤ fj(xj), for all feasible
xj ∈Xj .

2.2 An Overview of the Multifactorial Evolutionary Algorithm

The MFEA is inspired by the bio-cultural models of multifactorial inheritance.
The algorithm is in fact classified under the broad umbrella of memetic com-
putation [9, 10] as it considers the transmission of biological as well as cultural
building blocks (genes and memes) [11, 12] from parents to their offspring. In
particular, cultural effects are incorporated via two aspects of multifactorial
inheritance acting in concert, namely (a) assortative mating and (b) vertical
cultural transmission.

The basic structure of the MFEA is presented in Algorithm 1. Details of its
various distinctive features are discussed next.

Algorithm 1 Multifactorial evolutionary algorithm.
1: Generate an initial population of solutions and store it in current-pop.
2: Evaluate every solution with respect to every optimization task in the multitasking

environment.
3: Compute the skill factor of each individual.
4: while (stopping conditions are not satisfied) do
5: Apply genetic operators on current-pop to generate an offspring-pop (see Algo-

rithm 2).
6: Evaluate the individuals in offspring-pop for certain optimization tasks only (see

Algorithm 3).
7: Concatenate offspring-pop and current-pop to form an intermediate-pop.
8: Re-compute the scalar fitness and skill factor of all individuals.
9: Select the fittest individuals from intermediate-pop to survive into the next gen-

eration and form the new current-pop.
10: end while
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2.3 Chromosome description and decoding procedure

Assuming there to be K optimization tasks, we define a unified search space Y
with dimensionality (Dmultitask) equal to maxj{Dj}. Thus, during population
initialization, every individual is assigned a vector ofDmultitask random-keys [13,
14] which lie in the fixed range [0, 1]. This vector constitutes the chromosome of
that individual. While addressing task Tj , only the first Dj random-keys of the
chromosome are considered.

There is a strong theoretical motivation behind using the aforementioned en-
coding scheme. In particular, it is considered to be an effective means of access-
ing the power of population-based search. As the schemata (or genetic building
blocks) [15] corresponding to different optimization tasks are contained within a
unified pool of genetic material, they get processed by the EA in parallel. Most
importantly, this encourages the discovery and implicit transfer of useful genetic
material from one task to another in an efficient manner. Moreover, as a single
individual in the population may inherit genetic building blocks corresponding to
multiple optimization task, the analogy with multifactorial inheritance becomes
more meaningful.

Given a chromosome y ∈ Y , a decoding scheme must first be employed to
transform y into a meaningful task-specific solution representation. In the case of
continuous optimization, this can be achieved by linearly mapping each random-
key from the unified space to the original search space of the optimization task.
For instance, consider a task Tj in which the ith variable (xi) is bounded in the
range [Li, Ui]. If the ith random-key of a chromosome y takes value yi ∈ [0, 1],
then the decoding procedure is given by xi = Li + (Ui − Li) · yi

2.4 Cultural aspects of the MFEA

In the MFEA, we interpret the skill factor (τ) of an individual as a computa-
tional representation of its cultural background. Accordingly, while simulating
genetic operations (via crossover and mutation), the phenomenon of assortative
mating (which states that individuals prefer to mate with those sharing a simi-
lar cultural background) is enforced by prescribing a set of conditions that must
be satisfied for two randomly selected parent candidates to undergo crossover.
A summary is provided in Algorithm 2. The occurrence of assortative mating
in the natural world is used in the models of multifactorial inheritance to ex-
plain pedigreed traits that extend over several generations [8]. In the case of the
MFEA, we introduce a tunable parameter called the random mating probability
(rmp) which follows the principle of assortative mating and is used to balance
exploration and exploitation during evolution of individuals in the search space.
Setting rmp ≈ 0 implies that only culturally alike individuals are allowed to
crossover, while setting rmp ≈ 1 permits completely random cross-cultural mat-
ing. In the former case, the predominantly intra-cultural mating and the small
genetic variations produced by mutation (see Algorithm 2) facilitate the scan-
ning of confined regions of the search space. As a result however, there is always
the tendency for solutions to get trapped in local optima. On the other hand,
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Algorithm 2 Assortative mating
1: for i = 1 : |P |/2 do
2: Randomly select two parents P1 and P2 from current-pop.
3: Generate a random number rand between 0 and 1.
4: if (τ1 == τ2) or (rand < rmp) then
5: Parents P1 and P2 crossover to give two offspring individuals C1 and C2.
6: else
7: P1 is mutated slightly to give an offspring C1.
8: P2 is mutated slightly to give an offspring C2.
9: end if
10: Append C1 and C2 to offspring-pop.
11: end for

when rmp is sufficiently greater than 0, the increased cross-cultural mating leads
to the creation of offspring with diverse genetic properties, thereby facilitating
the escape from local optima. In addition, it is contended that exclusive mat-
ing between individuals belonging to the same cultural background could lead
to the loss of good and diverse genetic material available from other cultural
backgrounds. In Algorithm 1, notice that the MFEA is bootstrapped by evalu-

Algorithm 3 Vertical cultural transmission
1: Consider an offspring C which either has 2 parents P1 and P2, or a single parent
P1 (or P2) (see Algorithm 2).

2: if (C has 2 parents) then
3: Generate a random number rand between 0 and 1.
4: if (rand < 0.5) then
5: C imitates P1 → Evaluate and locally improve C with respect to task τ1 (skill

factor P1).
6: else
7: C imitates P2 → Evaluate and locally improve C with respect to task τ2 (skill

factor P2).
8: end if
9: else
10: C is evaluated and locally improved with respect to task τ1 (or τ2).
11: end if
12: Objective function values of C with respect to all unevaluated tasks are artificially

set to ∞.

ating every individual in the initial population with respect to every task in the
multitasking environment. However, it is evident that carrying out exhaustive
evaluations in all subsequent generations is likely to be computationally too ex-
pensive. For that reason, it is considered practical for an offspring to only be
evaluated for a particular task on which it is most likely to be effective. The
algorithmic realization of the aforementioned notion is achieved via a selective
imitation strategy [7] as a form of vertical cultural transmission (see Algorithm
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3). Accordingly, an offspring in the MFEA is only evaluated with respect to the
task at which at least one of its parents is highly skilled. In other words, the
offspring randomly imitates the skill factor (or cultural background) of any one
of its parents. Furthermore, every offspring undergoes local improvements with
respect to the skill factor that it chooses to imitate (details of the local search
algorithm shall be provided in Section 4). Notice that since the genetic compo-
sition of an offspring is a combination of the genetic material of its parents, it is
reasonable to expect its skill factor to liken that of its parents.

A crucial outcome emerges from the combined effect of assortative mating
and vertical cultural transmission. On occasions when parents with different skill
factors happen to crossover, a multicultural environment is created for offspring
to be reared in. In such situations, it is possible for an offspring that is genetically
closer to one parent to imitate or be culturally influenced by the other. It is
this feature of the MFEA that leads to implicit genetic transfer across tasks.
Refined genetic material created within individuals of a particular skill factor,
if also useful for a different task, can be effectively transferred via the proposed
mechanism.

3 The Polygenic Evolutionary Algorithm

As described above, assortative mating and vertical cultural transmission repre-
sent the core forms of cultural interaction in the MFEA. In order to understand
their importance towards effective evolutionary multitasking, we herein propose
an alternate polygenic evolutionary algorithm (PGEA) which curtails the cul-
tural aspects of the evolutionary process as prevalent in the MFEA. Thus, in
comparison to the PGEA, the credit of any improvement in performance achieved
by the MFEA can be entirely assigned to gene-culture interactions.

In the PGEA, the first step to removing cultural bias is taken by ignoring
the phenomenon of assortative mating. Thus, any two members of the PGEA
population, regardless of whether they possess the same skill factor or not, are
allowed to mate freely. In other words, the value of rmp is essentially fixed at
1, implying that uninhibited cross-cultural mating is allowed to occur; which is
accompanied by probabilistic mutation of the generated offspring. Secondly, the
effect of vertical cultural transmission is minimized by permitting the generated
offspring to randomly select any task for evaluation regardless of the skill fac-
tor(s) of their parents (i.e., the strategy of selective imitation is also ignored).
For a complete overview of the incorporated modifications, see Algorithm 4.
The ramifications of these modifications towards the overall performance of the
multitasking engine shall be investigated in the next section.

4 Empirical Study

The main aim behind the computational experiments is to better understand the
effects of gene-culture interactions towards the overall efficacy of evolutionary
multitasking. The simplest way of acquiring a qualitative understanding of the
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Algorithm 4 Genetic mechanisms of the polygenic evolutionary algorithm
1: Consider two parents P1 and P2 randomly selected from current-pop.
2: P1 and P2 crossover to give two offspring solutions C1 and C2.
3: Offspring C1 and C2 may be slightly mutated with a predefined probability.
4: Each offspring is evaluated for any one randomly selected task (individual learning

will be applied here). The objective values of the offspring with respect to all
unevaluated tasks are artificially set to ∞.

effects is to compare the performance of the MFEA (which incorporates a variety
of cultural biases through assortative mating and vertical cultural transmission)
and the PGEA (which removes all cultural bias). The aforementioned approach
is therefore adopted herein.

4.1 Experimental setup and algorithmic specifications

In this section, we carry out several computational experiments on popular
benchmark problems in continuous optimization. We consider a unimodal func-
tion: a) sphere (search region [100, 100]), and four complex multimodal func-
tions [16]: b) shifted and rotated Rastrigin (search region [−5, 5]) (search region
denotes the box constraint on every dimension), c) shifted and rotated Ack-
ley (search region [−32, 32]), d) shifted and rotated Griewank (search region
[−600, 600]) and e) rotated Weierstrass (search region [−0.5, 0.5]). The dimen-
sionality of each of the benchmark functions is fixed at 30, and the rotation
matrix corresponding to each function is randomly generated. During compu-
tational experiments, we combine any two of the benchmark functions together
to form a single 2-factorial problem. Moreover, the instances are setup such
that the global optima of the two constitutive tasks in a single MFO problem
are largely separated (demonstrated in Fig. 1a). This ensures that there is no
apparent source of synergy (or genetic complementarity) between the tasks.

In Table 1, we list the descriptions of four pairs of 2-factorial problems that
have been considered in this paper. The second column of the table states the
combined functions. For example, (Task1, Task2) ≡ (Sphere, Rastrigin) implies
that the sphere function and the Rastrigin function have been combined into
a single MFO run. The third column of Table 1 represents the location of the
global optimum of Task1, while the fourth column represents the location of the
global optimum of Task2. With regard to the MFEA and the PGEA, we set the
population size to 100 individuals which are evolved over 500 generations. The
rmp (which only occurs in the MFEA) is configured to 0.3 in all experiments so
as to allow sufficient cross-cultural mating. With regard to the variation opera-
tors [17], we employ the Simulated Binary Crossover (SBX) [18] and Gaussian
mutation operators throughout. Particularly, in the PGEA, the probability of
mutation was kept fixed at 10%. Further, in order to facilitate the discovery
of high quality solutions, we include a BFGS quasi-Newton individual learning
step into each task evaluation call (note that learning proceeds in the spirit of
Lamarckism [3, 19]). We realize that hybridizing EAs with individual learning
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Table 1. Description of MFO test instances. (Task1, Task2) implies that Task1 and
Task2 are combined in a single MFO run.

No. MFO problems Global optimum of Task1 Global optimum of Task2
1 (Sphere, Rastrigin) xi = 50,∀i xi = 0, ∀i
2 (Ackley, Weierstrass) xi = 20,∀i xi = 0, ∀i
3 (Griewank, Weierstrass) xi = 300, ∀i xi = 0, ∀i
4 (Sphere, Ackley) xi = 50,∀i xi = 0, ∀i

(via local search) is traditionally perceived as a form of cultural evolution or as
a first generation memetic algorithm [19, 20]. However, judging from the stand-
point of multifactorial inheritance, in the present work, local search is not viewed
as a separate source of cultural influence that acts over and above assortative
mating and vertical cultural transmission.

4.2 Discussions

Figure 1a depicts a 1-D illustration of the separated sphere and Rastrigin func-
tions. The convergence trends of the multimodal Rastrigin function in this sce-
nario (given a 30-D search space), as obtained by the MFEA and the PGEA, is
provided in Figure 1b. In addition, the figure also contains a third curve, labeled
as SOEA, which represents a traditional single-objective optimization-based ap-
proach to solving the Rastrigin function (note that the SOEA employs identical
variation operators and local search process as the MFEA and the PGEA). For
fairness of comparison, the SOEA is also enhanced with the same Lamarckian
local search algorithm as the MFEA and the PGEA. It is clear from the conver-
gence trends that the performance of the MFEA and the PGEA far exceed that
of the SOEA on this instance. The observation underpins our broader claim that
provisions for enhanced population diversity and implicit genetic transfer, as fa-
cilitated by the evolutionary multitasking paradigm, are potentially invaluable
tools for accelerating the convergence process of complex optimization tasks.

On further inspecting Figure 1b, it is observed that the performance achieved
by the MFEA is even superior to that of the PGEA. This result provides strong
evidence of the fact that gene-cultural interactions play an important role in
improving convergence characteristics. As has been discussed in Section 2.4, the
cultural aspects of the MFEA (manifested by assortative mating and vertical
cultural transmission, acting in concert) lead to a favorable balance between ex-
ploration (via population diversification and genetic transfer during controlled
cross-cultural mating) and exploitation (via assortative mating) of the search
space. In contrast, in the PGEA, the removal of cultural bias disrupts the afore-
mentioned balance. The uninhibited cross-cultural mating leads to excessive mix-
ing of genes, eventually causing the loss of pedigreed high quality genetic material
[7]. Moreover, by ignoring vertical cultural transmission, the systematic search of
fitter regions of the objective function landscape is impeded. Therefore, it comes
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as little surprise that the performance of the resultant multitasking engine (i.e.,
the PGEA) is inferior to that of the MFEA. The convergence trends depicted in

Fig. 1. (a) 1-D illustration of separated Rastrigin and sphere functions in the unified
search space, and (b) convergence trends of Rastrigin function in (Sphere, Rastrigin).

Fig. 2. The convergence trends of (a) Ackley function and (b) Weierstrass function in
(Ackley, Weierstrass).

Figures 2-4 (corresponding to problem numbers 2-4 in Table 1) have similar qual-
itative characteristics as those presented in Figure 1. This empirical observation
goes a long way towards further reinforcing our inferences as drawn previously.
In Figure 2, the convergence trends of Ackley function (in Figure 2a) and the
Weierstrass function (in Figure 2b) are presented, when solved in conjunction as
(Ackley, Weierstrass). Note that both functions in this 2-factorial problem are
complex and multimodal. Nevertheless, the convergence rate achieved by the
MFEA is found to be accelerated in both cases, in comparison to the PGEA as
well as the SOEA. Thus, it is contended that the provision for implicit genetic
transfer, appropriately supervised by gene-culture interactions as prescribed by
the models of multifactorial inheritance, allows the population to successfully
exploit the landscape of multiple complex functions simultaneously, thereby ef-
ficiently bypassing obstacles to converge faster.

An important observation we also make here is that the performance of the
PGEA proves to be even inferior to the SOEA in some of the examples (see
Figure 2a and Figure 4). This shows that eliminating cultural bias altogether
from an evolutionary multitasking engine can often be highly detrimental to its
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overall performance. In other words, the benefits of gene-culture interaction are
strongly highlighted in these examples.

Fig. 3. The convergence trends of Weierstrass function in (Weierstrass, Griewank).

Fig. 4. The convergence trends of Ackley function in (Sphere, Ackley).

5 Conclusion

The main aim of this paper was to show the importance of gene-culture inter-
action, as manifested in the bio-cultural models of multifactorial inheritance,
towards the design of an effective multitasking engine. To this end, we have pre-
sented a pair of algorithms, namely, (a) the original multifactorial evolutionary
algorithm (MFEA) which includes cultural biases, and (b) a new polygenic evolu-
tionary algorithm (PGEA) which curtails all cultural aspects of the evolutionary
process. The consistently superior performance of the MFEA, as compared to
the PGEA (and also a traditional single-objective optimization approach), on
a variety of benchmark problems in continuous optimization, has demonstrated
that the incorporation of gene-culture interaction is indeed a pivotal aspect of
effective evolutionary multitasking.
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