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Abstract—Traditionally, single-objective and multi-objective
optimization have only considered a single problem in one
run. However, the notion of evolutionary multitasking, which
aims at solving multiple optimization problems simultaneously,
has recently emerged in Evolutionary Computation (EC). It is
inspired by the implicit parallelism of population-based search,
which attempts to take advantage of implicit genetic transfer in a
multitasking environment. According to optimization literature,
transforming a single-objective optimization (SOO) problem into
a multi-objective optimization (MOO) problem has often been
found to remove local optima. Motivated by the aforementioned
idea and the concept of multitasking, in this paper, we introduce
a new strategy for tackling complex multi-modal problems. In
particular, we solve the original (or target) SOO task together
with an artificially formulated MOO task in a multitask setting.
Therein, the MOO task is expected to provide a useful inductive
bias to the search progress of the target SOO task by leveraging
on the transferable knowledge shared between them, thereby
helping overcome local optima and effectively guiding the popu-
lation towards more promising regions of the search space.

I. INTRODUCTION

Over the years, the algorithms of evolutionary computation
(EC) have become popular tools for solving complex real-
world optimization problems. Within EC, Evolutionary algo-
rithms (EAs) are optimization meta-heuristics that are inspired
by biological evolution and follow Darwinian principles of
Natural Selection[1, 2]. Based on a collection of simple rules
mimicking natural evolutionary processes, EAs have been
demonstrated to be capable of solving nonlinear, multi-modal,
and discrete NP-hard problems efficiently [3, 4].

Traditionally, the design of EAs has been focused on effi-
ciently dealing with a single problem at a time. This includes a
variety of applications in single-objective optimization (SOO)
[1], multi-objective optimization (MOO) [5] and more recently
in many-objective optimization [6]. Notably, there has seldom
been any effort made towards evolutionary multitasking, i.e.,
solving multiple optimization problems simultaneously using
a single population of evolving individuals. It is only very
recently that the notion of evolutionary multitasking has
been formalized under the label of multifactorial optimization
(MFO) [7–10]. In MFO, each task contributes a unique factor
influencing the evolution of a single population of individu-
als. Accordingly, the main aim is to harness the underlying

commonalities between the tasks to improve performance
characteristics of the optimization process.

In [7], in order to efficiently realize the evolutionary mul-
titasking paradigm, a multifactorial evolutionary algorithm
(MFEA) has been proposed. The MFEA is inspired by bio-
cultural models of multifactorial inheritance [11, 12] which
suggest that the complex developmental traits among offspring
are influenced by the interaction of genetic as well as cultural
factors. With this in mind, it is contended that the multiple op-
timization tasks in a single multitask setting represent multiple
blocks of cultural bias coexisting in the same environment. The
evolution of a population of individuals in such a multicultural
environment facilitates the autonomous transfer of knowledge
(in the form of encoded genetic material) across the different
tasks. As a result, if there happen to exist some form of
underlying commonalities or relatedness between tasks, these
get spontaneously harnessed, thereby improving convergence
characteristics. From the context of machine learning, a similar
case study in [13] involved a repertoire of related problems that
were created to improve regression modeling using genetic
programming. However, to the best of our knowledge, no
equivalent concept in the field of optimization has yet been
thoroughly investigated for the purpose of improved problem
solving in complex real-world domains.

An interesting approach to solving complex optimization
problems is the reformulation of an SOO problem as a related
MOO problem, an idea that was proposed in [14]. According
to Knowles et. al. [14], the possibility of reducing local optima
by the aforementioned process of multiobjectivization can be
illustrated using an abstract building block problem. As an
experimental case study, the authors applied their algorithm for
solving the traveling salesman problem (TSP), achieving some
noteworthy results. However, it was also identified in [14] that
while the multi-objective reformulation could often achieve
performance enhancements, there continued to be several
examples in which the SOO approach was still superior.

Inspired by the previous study, in this paper, we aim to
further improve optimization performance for complex NP-
bard problems by combining an original SOO formulation
together with its associated MOO reformulation in a single
multitasking environment. The artificially generated MOO



task, with hopefully reduced local optima, is expected to act as
a helper task which aids the search process of the original (or
target) problem via the process of implicit genetic transfer. To
elaborate, we first decompose the target SOO problem into an
associated MOO problem, and then employ the evolutionary
multitasking engine to solve both problems in conjunction
using the same population of evolving individuals. As a
consequence, it is expected that we may successfully leverage
upon the unique advantages provided by both approaches
(i.e., SOO and MOO), effectively overcoming local optima to
converge towards globally optimal solutions more consistently.
As a realization of the proposed multitasking paradigm, we
continue to use the TSP for our experimental studies in this
paper.

The remainder of this paper is organized as follows. In
Section 2 we introduce the preliminaries of this paper. This
includes a brief overview of multi-objective optimization and
a discussion on the basic concepts of evolutionary multitask-
ing. In Section 3, the decomposition strategy employed for
reformulating SOO to MOO, as was introduced in [14] in the
context of TSPs, is described. In Section 4, we describe the
multi and single-objective optimization multifactorial evolu-
tionary algorithm (M&S-MFEA) for the TSP. Thereafter, in
Section 5, numerical experiments are carried out showcasing
the efficacy of the proposed algorithm. Section 6 concludes
the paper with some directions for future work.

II. PRELIMINARIES

A. Multi-objective Optimization
The general mathematical formulation of a multi-objective

minimization problem can be stated as follows

min (f1(x), f2(x), . . . , fk(x)), (1a)
s.t. x ∈X. (1b)

Here, X represents the set of all feasible solutions, and k
is the dimensionality of the objective space. Considering any
two solutions x1 and x2 ∈ X , x1 is said to dominate x2 iff
∀i ∈ {1, 2, . . . , k} fi(x1) ≤ fi(x2) and ∃j ∈ {1, 2, . . . , k}
such that fj(x1) < fj(x2). Moreover, a solution x∗ is said to
be optimal in multi-objective sense (or Pareto optimal) if x∗ ∈
X and there exists no feasible x such that f(x) dominates
f(x∗).

It can be seen from this description that for all k > 1 there
will generally exist a set of Pareto optimal solutions, instead
of a single optimal solution (as is the case for single objective
optimization problems). The image of these solutions in the
objective space is said to constitute the Pareto front or the
Pareto surface.

MOO is a research area within multiple criteria decision
making [15] where the target is to find the optimum trade-off
between a set of objective functions, i.e., f1, f2, . . . , fk in Fig
1. In other words, by MOO one attempts to deduce a favorable
balance between two or more conflicting objectives of the
same underlying problem. Thus, although multiple aspects or
objectives are taken into consideration, MOO only deals with
a single optimization task during each run.

B. Multifactorial Optimization: Formalizing Evolutionary
Multitasking

It is noted that since MOO instances comprise multiple
objectives at a time, there may (inaccurately) appear to exist
some form of conceptual overlap between them and evolu-
tionary multitasking. Thus, in the discussion that follows, we
highlight the distinction between the two paradigms.

Basically, while MOO accounts for multiple objectives of
the same optimization task, in contrast, evolutionary multi-
tasking tackles multiple distinct optimization tasks at once.
As shown in Fig 1, F1, F2, . . . , Fk represent the objective
functions of each task separately. The aim of evolutionary
multitasking is to get the best solution for each of the
tasks, rather than finding a desirable trade-off between their
objectives. Further, note that one or more tasks in evolutionary
multitasking could themselves be an MOO (i.e., any one
F1, F2, . . . , Fk could be vector-valued), thereby highlighting
the greater generality of the paradigm.

Fig. 1: Distinguishing between evolutionary multitasking and
MOO. In MOO, all objective functions typically depend on a
common search space. In contrast, each task in evolutionary
multitasking has its own search space, thereby making search
space unification an important requirement. Furthermore, note
that each task in multitasking could itself have multiple
objectives.

In a multitask setting with k tasks, the jth task, denoted
Tj , has a search space Xj with an objective function Fj :
Xj → R. The goal of such a multitasking instance can be
stated mathematically as shown below,

deduce {x1,x2, . . . ,xk} (2a)
= argmin{F1(x), F2(x), . . . , FK(x)} (2b)

s.t. xj ∈Xj , j = 1, 2, . . . , k. (2c)

Next, we will introduce some basic concepts as were
proposed in [7]. Consider k distinct optimization tasks are
presented to a single evolutionary solver at the same time.
Without loss of generality, all optimization tasks are assumed
to be minimization problems. In order to develop a suitable
algorithm for evolutionary multitasking, it is necessary to



conceive a valid measurement to evaluate the fitness of indi-
viduals in a multitasking environment, based on the Darwinian
principle of natural selection. Note that all the individuals
in a population P are encoded in a unified search space
Y encompassing the search spaces of all constitutive tasks,
i.e., X1,X2, . . . ,Xk are all subsumed in Y as shown in
Fig 1. Importantly, each individual can be decoded into a
task-specific solution representation with respect to all the
optimization tasks. Accordingly, the decoded form of pi can
be written as xi1,x

i
2, . . . ,x

i
k,, where xi1 ∈ X1, xi2 ∈ X2,

. . . , xik ∈ Xk. The main motivation behind the unified
search space is to merge the building blocks corresponding
to different tasks into a unified pool of genetic material [4],
thereby allowing the EA to process them in parallel and
facilitate the implicit genetic transfer to kick in.

The following pair of metrics are defined for every individ-
ual pi, where i ∈ 1, 2, . . . , |P |, in a multitasking environment
comprising scalar-valued optimization tasks only, i.e., it is
assumed temporarily that F1, F2, . . . , Fk are all scalar.

• Factorial Rank: The factorial rank rij of pi on task Tj is
simply the index of pi in the list of population members
sorted in ascending order with respect to Fj .

• Scalar Fitness: The list of factorial ranks
{ri1, ri2, · · · , riK} of an individual pi is reduced
to a scalar fitness ϕi based on its best rank over all
tasks; i.e. ϕi = 1/min{ri1, ri2, · · · , riK}.

The comparison between individuals are carried out simply
based on the scalar fitness. For example, individual pa is
considered to dominate individual pb in multifactorial sense
simply if φa > φb. Another important property of the
aforementioned definitions and comparison procedure is that
if individual p∗ maps to the global optimum of any one task,
then ϕ∗ ≥ ϕi, for all i ∈ 1, 2, . . . , |P |. In other words,
multifactorial optimality is guaranteed if convergence to a
global optimum is achieved.

• Multifactorial Optimality: An individual p∗, with a list of
objective values{f∗1 , f∗2 , . . . , f∗k}, is considered optimum
in multifactorial sense iff ∃j ∈ {1, 2, . . . ,K} such that
f∗j ≤ Fj(xj), for all feasible xj ∈Xj .

III. CREATING MOO HELPER TASKS FOR EVOLUTIONARY
MULTITASKING: A TRAVELING SALESMAN PROBLEM

EXEMPLAR

In this part, we briefly introduce the classical TSP and
the algorithm proposed in [14] for reformulating it as a
multi-objective optimization problem. The artificially gener-
ated MOO task brings to the table some unique properties
which when combined with the target SOO task in a multitask
setting can be expected to provide improved convergence
characteristics towards globally optimum solutions.

The TSP is a classical combinatorial optimization problem
in the field of computer science. It consists of a set of N
cities c1, c2, . . . , cN and an associated N ×N distance matrix
M representing the distances between arbitrary two cities,
i.e., M(c1, c2) is the distance from c1 to c2. In this paper,

we only focus on solving symmetric TSPs, i.e., in which the
distance matrix M is a symmetric matrix. The objective, quite
straightforwardly, is to find a Hamiltonian path (a circular path
visiting every city exactly once) with the smallest possible
distance [16, 17]. TSP can be formulated as an integer linear
program, but it has been shown to be NP-hard. For further
descriptions, please refer to [18]. Using π = (π1, π2, . . . , πN )
as a permutation of (1, 2, . . . , N) denoting the sequence in
which the salesman must visit cities in the round trip, the
cost, i.e., the total distance associated with the tour, can be
calculated as

D(π) =

N∑
i=1

M(cπ[i], cπ[i⊕1]) (3a)

where i⊕ 1 =

{
i+ 1 if i < N
1 if i = N

(3b)

According to Knowles et. al. [14], the transformed MOO
version of the original TSP is formulated by decomposing
the original problem. They simply segment the original TSP
into two distinct sub-tours, each to be minimized, and the
objectives of each sub-tour are defined using the following
formula:

f1(π, a, b) =

π−1[b]∑
i=π−1[a]

M(cπ[i], cπ[i]⊕1) (4a)

f2(π, a, b) =

N∑
i=π−1[b]

M(cπ[i], cπ[i]⊕1) (4b)

+

π−1[a]−1∑
i=1

M(cπ[i], cπ[i]⊕1) (4c)

where π−1[x] denotes the position of x in π, and the two cities
a and b are specified in priori. If π−1[a] < π−1[b], a and b
are swapped. Noticing that the sum of the two objectives is
the same as the objective of the original single-objective TSP,
the original optima are ensured to become a Pareto-optimum
under the new set of objectives. The choice of the city pair a
and b are selected arbitrarily, which was partially investigated
in [14].

The experiment results in [14] indicated that in some cases
tackling the TSP as a MOO problem can often reduce local
optima and facilitate improved optimization. However, it was
also noted that in some other cases, SOO remained the superior
approach. Thus, the overall results lead to the contention that
by somehow enabling the search characteristics of SOO and
MOO to act in concert, high quality solutions may be achieved
more consistently. An elegant way of achieving the above is to
allow evolutionary multitasking to take over and autonomously
harness the complementarities between the two approaches.

IV. M&S-MFEA: THE MULTIFACTORIAL EVOLUTIONARY
ALGORITHM FOR MULTI AND SINGLE-OBJECTIVE

OPTIMIZATION

The principal hypothesis of this paper is that by combining a
complex optimization task together with a closely related, but



often simpler, task in a single multitasking environment, it may
be possible to achieve substantial performance improvements
by harnessing the unique search benefits provided by both
tasks. Since the MOO reformulation of the TSP is oftentimes
successful at removing several local optima, it may act as a
simpler helper task that aids the optimization search for the
standard SOO formulation of the NP-hard TSP. However, it
is noted that combining SOO and MOO during multitasking
leads to some algorithmic challenges, which will be resolved
hereafter.

When dealing with SOO and MOO tasks in conjunction
during multitasking, a matter of concern is the prescription
of a meaningful factorial rank of an individual with respect
to a constitutive MOO task. Thus, we begin this section by
first describing a simple approach for achieving the above.
Thereafter, based on the prescribed ordering scheme, we
present details of the new M&S-MFEA.

For the sake of brevity, the concepts of Non-dominated
Front (NF) and Crowding Distance (CD) in constrained multi-
objective optimization are directly adopted from the literature
[19]. We do not elaborate on their interpretations in this paper
since these concepts have been well-established over several
years of multi-objective optimization research.

Notice that for ranking individuals in a population, it is
sufficient to define a preference relationship between two
individuals and show that the binary relationship satisfies the
properties of irreflexivity, asymmetry, and transitivity. To this
end, let us consider a pair of individuals p1 and p2 with non-
dominated fronts NF1 and NF2 and crowding distances CD1

and CD2, respectively. With the aim of facilitating a diverse
distribution of points along the PF, we prescribe individual
p2 to be preferred over p1 (i.e., p2 � p1) if any one of the
following conditions holds:

• NF2 < NF1

• NF2 = NF1 and CD2 > CD1

For the aforementioned preference relationship, the satis-
faction of the necessary properties can be simply shown as
below.

• Property 1 (Irreflexivity): pi � pi, for all pi ∈ P
Proof : Suppose pi � pi. Then, either (a) NFi < NFi or (b)

NFi = NFi and CDi > CDi. However, since NFi = NFi and
CDi = CDi, the supposition leads to a contradiction.

• Property 2 (Asymmetry): If two individuals p1 and p2
satisfy p2 � p1, then p1 � p2.

Proof : Suppose p1 � p2. Then, either (a) NF1 < NF2

or (b) NF1 = NF2 and CD1 > CD2. However, according to
p2 � p1, we have either (a) NF2 < NF1 or (b) NF2 = NF1 and
CD2 > CD1. Thus, the supposition leads to a contradiction.

• Property 3 (Transitivity): If p2 � p1 and p3 � p2, then it
must also be the case that p3 � p1.

Proof : We are given that p2 is preferred over p1 according
to the conditions stated earlier. Since p3 � p2 we also have
either (a) NF3 < NF2 or (b) NF3 = NF2 and CD3 > CD2. If
condition (a) is true then it implies NF3 < NF1. If condition
(b) is true then it implies either (b.1) NF3 < NF1 or (b.2)

NF3 = NF1 and CD3 > CD1. Therefore, if p2 is preferred
over p1, and p3 is preferred over p2, then p3 must also be
preferred over p1.

Accordingly, it is clear that the factorial ranks of individuals
for any MOO task can easily be assigned by ranking them
according to the two aforesaid conditions. The workflow of the
M&S-MFEA, which utilizes this scheme in the multitasking
approach to solving TSPs, is reported in Algorithm 1. Note
that since we only deal with a single kind of optimization task,
we can utilize a standard domain specific unification scheme
(which implies that no added steps for decoding individuals
from the common genotype space to the phenotype space are
necessary here). To be precise, we use a permutation based
description of Y in Fig 1 to represent candidate TSP solutions.

Algorithm 1 Workflow of the proposed M&S-MFEA for TSPs

1: Randomly select a city pair a and b for MOO reformula-
tion of TSP instance.

2: Generate an initial population of TSP solutions and store
it in current-pop.

3: Evaluate every solution with respect to the target SOO and
the helper MOO tasks.

4: while stopping conditions are not satisfied do
5: Apply genetic operators (crossover + mutation) on

current-pop to generate an offspring-pop.
6: Evaluate the individuals in offspring-pop with respect

to the target SOO and the helper MOO tasks.1

7: Concatenate current-pop and offspring-pop to form an
intermediate-pop.

8: Compute factorial ranks for all individuals in
intermediate-pop. Standard sorting is used for SOO
and (NF, CD) is used for MOO.

9: Compute scalar fitness for all individuals in
intermediate-pop.

10: Select fittest individuals from intermediate-pop to
survive into the next generation and form the new
current-pop.

11: end while

The fundamental outcome of the mechanisms of the M&S-
MFEA is that the population of evolving individuals is divided
into two parts, each experiencing a distinctive selection pres-
sure. While one part caters to the target SOO task, the other
part caters to the artificially generated MOO task. As a result
of the combined effect of the two unique selection pressures,
the population is expected to simultaneously harness the
search characteristics of SOO and MOO, thereby potentially
providing solutions that are at least as good as those obtained
by either approach independently.

V. COMPUTATIONAL STUDIES

In this section, we will present our results for a selection
of problems from the TSPlib [20].

1Note that, in the case of TSP, evaluation for one task directly provides
objective values for the other task. Thus, significant added function evaluations
are not entailed.



To demonstrate the competence of our proposed M&S-
MFEA, we compare its performance against a standard single-
objective evolutionary algorithm (SOEA) and a standard
multi-objective evolutionary algorithm (MOEA). Note that
the MOEA follows the basic steps of the popular NSGA-
II procedure [19]. For fairness of comparison, we use the
same permutation-based encoding scheme, crossover operator,
mutation operator, and local search operator in the M&S-
MFEA, SOEA and the MOEA. In particular, the variation
operators are order crossover (OX) [21] and random swap
for mutation. In order to facilitate convergence to high quality
solutions, a local solution refinement step is applied to every
individual. In our current implementation, we use 2-opt [22]
as the preferred local search algorithm (with a maximum of
50 local search moves per individual). Finally, the parameter
settings are also kept consistent across all algorithms, i.e., a
population size of 100 individuals is employed, the probability
of mutation is 0.2, and the termination condition is set to the
completion of 150 generations.

Fig. 2: Convergence trends for M&S-MFEA, SOEA and
MOEA on TSP kroA200

For the purpose of qualitatively understanding the outcomes
of evolutionary multitasking, we first consider the kroA200
instance from TSPlib [20]. Note that the results presented are
averages across 30 independents runs of the solvers. As per
[20], the best known result for the TSP instance kroA200 is
29368. To this end, the averaged outputs obtained by the M&S-
MFEA, SOEA and MOEA are 29399.3, 29436.7, 29428.0,
respectively. Interestingly, the M&S-MFEA can achieve the
best known result on 7 out of the 30 runs, whereas the SOEA
shows the tendency of getting continuously trapped at a local
optimum. From the convergence trends in Fig 2, we observe
that the SOEA converged as rapidly as the M&S-MFEA during
the initial stages of the optimization process (i.e., during the
first 50 generations), due to focused search on the original
task. However, during the later stages of evolution, while
the M&S-MFEA continues to successfully explore promising
regions of the search space, SOEA gets stuck. This is because
the MOO helper task aids in diversifying the population in
the evolutionary multitasking setup by acting as an additional

source of good quality genetic material. Comparing the trends
of M&S-MFEA and MOEA, the former is found to converge
faster because it autonomously combines the salient features
of SOO and MOO (by the process of implicit genetic transfer),
simultaneously benefiting from the focused search as well as
the increased diversity.

Fig. 3: Approximate Pareto front of the MOO helper task in
instance kroA200, as obtained using M&S-MFEA

Fig 3 shows the approximate Pareto optimal front of the
helper task (the MOO reformulation) obtained in the M&S-
MFEA for instance kroA200. Therein, we find that the indi-
viduals (mapped to the objective space) lie more-or-less along
a straight line given by the equation f1 + f2 ≈ 29368. This
condition demonstrates that the MOO helper task is indeed
helpful in maintaining a diverse set of individuals in a promis-
ing region of the search space, where the overall objective
value is at least close to the best known for kroA200. The fact
that the M&S-MFEA effectively exploits this phenomenon has
already been seen in Fig 2.

We show similar convergence trends in Figs 4a, 5 and 6
for instances kroA150, kroB200 and pr226, as well as the
approximate Pareto optimal front of the helper task obtained
in the M&S-MFEA for instance kroA150 in Fig 4b. Notice
that in the majority of cases the M&S-MFEA shows notably
superior performance to the SOEA and the MOEA.

In Table I we present the final results (mean travel time and
standard deviation) obtained for 21 different TSP instances
averaged over 30 runs. Among these, in 18 out of the 21 cases,
M&S-MFEA performs strictly better than SOEA. Further, in
comparison to MOEA, M&S-MFEA performs at least as good
on 16 out of the 21 instances, with the performance being
strictly better in 14 cases. In summary, the numerical results
highlight the global search efficacy and robustness achievable
by the proposed evolutionary multitasking approach.

VI. CONCLUSION

In this paper, we have introduced a generic new strategy
for tackling complex optimization problems. The efficacy of
the proposal is demonstrated on the NP-hard TSP as a test
case study. To elaborate, our approach involves solving a



(a) Convergence trends for M&S-MFEA, SOEA and
MOEA on TSP kroA200

(b) Approximate Pareto front of the MOO helper task in
instance kroA150, as obtained using M&S-MFEA

Fig. 4: Performances on TSP kroA200

target single-objective optimization (SOO) task in conjunc-
tion with a closely related (but artificially generated) multi-
objective optimization (MOO) task in the form of evolutionary
multitasking. The motivation behind the proposal is that the
associated MOO formulation can often act as a helper task
that aids the optimization performance by leveraging upon
the phenomenon of implicit genetic transfer. In particular, the
number of local optima is known to be reduced in the MOO
reformulation of the TSP. Thus, by allowing evolutionary
multitasking to autonomously harness the complementarities
between the SOO and MOO tasks, significant performance
improvements are likely to be achieved. To this end, we have
carried out computational experiments on a variety of TSP
instances from the TSPlib [20]. The results verify our claims
by depicting consistently superior solutions achieved by the
multitasking approach.

There are several directions for future research extension
of this work. For one, the present paper focuses on a specific
domain of application, namely, the TSP. However, there are a
variety of complex optimization problem domains of practical
interest, in discrete as well as continuous optimization, where

Fig. 5: Convergence trends for M&S-MFEA, SOEA and
MOEA on TSP kroB200

Fig. 6: Convergence trends for M&S-MFEA, SOEA and
MOEA on TSP pr226

similar methods can be of significant use. A noteworthy
application is in complex engineering design exercises where
related design (optimization) tasks occur commonly. While the
general practice is to invoke manual adaptation of knowledge
from one task to another, evolutionary multitasking opens up
possibilities for completely autonomous knowledge transfer (in
the form of encoded genetic material) across tasks, thereby
enabling significantly accelerated design stages.
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# Problem Best known M&S-MFEA SOEA MOEA
1 a280 2579 2583.0 ± 4.9 2583.4± 7.5 2586.7± 6.2

2 bier127 118282 118322.9 ± 125.8 118433.9± 196.1 118390.3± 126.9

3 ch130 6110 6118.2± 9.0 6128.4± 16.3 6115.6 ± 7.7

4 ch150 6528 6530.2± 6.1 6536.4± 11.3 6528.9 ± 2.6

5 d198 15780 15790.2 ± 9.8 15794.7± 12.8 15812.5± 23.8

6 gil262 2378 2385.1± 6.1 2389.2± 10.2 2386± 4.3

7 kroA150 26524 26524.4 ± 0.8 26538.5± 45.0 26527.3± 12.2

8 kroA200 29368 29399.3 ± 35.7 29436.7± 60.2 29428± 75.5

9 kroB150 26130 26132.3 ± 3.4 26146.8± 29.4 26137.4± 12.5

10 kroB200 29437 29466.2± 45.0 29478.1± 71.0 29477.8± 41.7

11 pr124 59030 59030 ± 0 59033.1± 11.7 59030 ± 0

12 pr136 96772 96828.7 ± 81.8 96895.3± 127.5 96859.1± 91.1

13 pr144 58537 58537 ± 0 58537 ± 0 58537 ± 0

14 pr152 73682 73695.6± 41.5 73736.4± 67.8 73686.7 ± 24.8

15 pr226 80369 80369.3 ± 1.0 80370.7± 4.5 80374.1± 7.8

16 pr264 49135 49167.6± 70.7 49186.7± 91.8 49166.8 ± 34.4

17 pr299 48191 48403.3± 117.1 48400.3± 133.6 48535.6± 123.1

18 rat195 2323 2334.8± 5.9 2336.9± 9.2 2334.7 ± 5.5

19 ts225 126643 126651.3 ± 33.6 126673.6± 63.8 126763.9± 91.0

20 tsp225 3916 3948.3± 16.6 3946.4 ± 14.2 3950.7± 14.7

21 u159 42080 42082.9 ± 16.1 42143.2± 128.6 42090.5± 57.7

CVRP and CARP,” IEEE Trans. Evol. Comput., vol. 19,
no. 5, pp. 644–658, Oct 2015.

[5] C. M. Fonseca and P. J. Fleming, “An overview of
evolutionary algorithms in multiobjective optimization,”
Evol. Comput., vol. 3, no. 1, pp. 1–16, 1995.

[6] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolu-
tionary many-objective optimization: A short review.” in
IEEE C EVOL COMPUTAT. Citeseer, 2008, pp. 2419–
2426.

[7] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial Evo-
lution: Towards Evolutionary Multitasking,” IEEE Trans.
Evol. Comput., 2015.

[8] A. Gupta, Y.-S. Ong, L. Feng, and K. C. Tan, “Multi-
objective multifactorial optimization in evolutionary mul-
titasking,” IEEE Trans. Cybern., accepted.

[9] Y.-S. Ong and A. Gupta, “Evolutionary multitasking:
A computer science view of cognitive multitasking,”
Cognit. Comput., pp. 1–18.
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