
Fast Transfer Gaussian Process Regression with

Large-Scale Sources

Bingshui Da1,2, Yew-Soon Ong1, Abhishek Gupta1,
Liang Feng3, Haitao Liu4

1School of Computer Science and Engineering, Nanyang Technological
University, Singapore

2SAP Innovation Center Network, Machine Learning, Singapore
3College of Computer Science, Chongqing University, China

4Rolls-Royce@NTU Corporate Lab, Nanyang Technological University,
Singapore

DA0002UI@e.ntu.edu.sg, {ASYSONG,ABHISHEKG}@ntu.edu.sg,
LIANGF@cqu.edu.cn, HTLIU@ntu.edu.sg

Abstract

In transfer learning, we aim to improve the predictive modeling of a tar-
get output by using the knowledge from some related source outputs. In
real-world applications, the data from the target domain is often precious
and hard to obtain, while the data from source domains is plentiful. Thus,
since the complexity of Gaussian process based multi-task/transfer learning
approaches grows cubically with the total number of source+target observa-
tions, the method becomes increasingly impractical for large (> 104) source
data inputs even with a small amount of target data. In order to scale known
transfer Gaussian processes to large-scale source datasets, we propose an ef-
ficient aggregation model in this paper, which combines the predictions from
distributed (small-scale) local experts in a principled manner. The proposed
model inherits the advantages of single-task aggregation schemes, including
efficient computation, analytically tractable inference, and straightforward
parallelization during training and prediction. Further, a salient feature of
the proposed method is the enhanced expressiveness in transfer learning -
as a byproduct of flexible inter-task relationship modelings across different
experts. When deploying such models in real-world applications, each local
expert corresponds to a lightweight predictor that can be embedded in edge
devices, thus catering to cases of online on-mote processing in fog computing
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settings.
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1. Introduction

Transfer learning (or inductive transfer) aims at improving the learning
of a particular target task by utilizing the knowledge available from related
source domains [1, 2]. It is widely applied in cases when the data from the
target domain is scarce, while the data from the source domain is exten-
sive. In today’s times of data democratization, where we have relatively easy
access to diverse information streams, the opportunity to harness the knowl-
edge from related examples to enhance performance on a new target task is
immense. As a result, the notion of transfer learning has recently attracted
significant research attention, with success stories reported in a variety of
areas, including, aerospace engineering [3], computer vision [4], natural lan-
guage processing [5], affective computing [6], general black-box optimization
problem-solving [7, 8], fuzzy systems [9, 10], etc.

Gaussian process (GP) [11] is a well-established method for inference on
functions, and has received research attention in various scenarios, such as
regression [12], classification [13], optimization [14, 15], data visualization
[16], etc. It provides a principled probabilistic kernel learning framework,
and closed-form inference that can be directly performed by applying Bayes’
rule. It is noted that in transfer learning, a naive approach has been to rely
on the practitioner to possess some a priori understanding of the suitability
of its application in a given scenario. However, it may be deceptively difficult
to ascertain the relationship between distinct domains, as a result of which
negative transfer [17] is a major threat for the generalization performance of
transfer learning models. However, multi-task/transfer GPs [18, 19, 20, 21]
can, in theory, avoid this risk by automatically learning task relations con-
cealed in data from various domains; thus adaptively transferring knowledge
from source domain to target domain.

Generally in real-world applications, it is possible for source data to be
collected and accumulated over time. For example, with the onset of the
Internet of Things (IoT) and cyber-physical systems, environmental data that
is collectable via cheap sensors can be abundantly gathered and stored. On
the other hand, distinct but associated environmental data that requires high

2



precision (high cost) sensors may be extremely scarce. In this setting, it may
be possible to exploit the knowledge embedded in the cheap source datasets
to enhance predictive accuracy for high precision target points. Importantly,
with the increasing amount of collected source data, it is noted that existing
transfer GP (TGP) approaches become progressively impractical, due to the
cubically scaling complexity of model learning. Yet it is found that TGPs
catering to large-scale source datasets has received little attention in the
literature.

While recent works in the general theme of multi-task/transfer GPs can
be found in [18, 22, 23, 24], these methods generally focus on applying low-
rank approximation to the full GP covariance matrix by selecting a set of
inducing variables. Although the complexity during inference can be reduced
to scale linearly to the number of observations, the major drawbacks of these
kinds of methods are that: (1) finding the locations for the inducing inputs
to best approximate the posterior is challenging, and (2) the predictions do
not interpolate the observation points in local regions - specifically, for quick-
varying functions with significant local structures, it may be difficult to find
any trust-worthy representation more compact than the complete set of the
local training observations. In other words, there clearly exists a research
gap in the field of adaptive TGPs to decrease the computational complexity
with large-scale source data inputs while simultaneously maintaining similar
local expressiveness of the original full TGP model.

It is found that in single-task learning, aggregation models, such as Bayesian
committee machine [25], product of experts [26, 27], mixture of experts
[28, 29], and so on, have been well-studied to reduce the computational bur-
den of large-scale GPs. These methods generally involve partitioning the
training inputs into local blocks or clusters, then modeling each block with
an independent GP as a local expert. If the blocks are spatially localized,
the overall model corresponds to a covariance function that imposes inde-
pendence between output values in different regions of the input space. In
comparison to the sparse approximation methods, the aggregation models
(1) do not require any additional inducing or variational parameters, (2)
allow straightforward parallelization to distribute the computations on in-
dividual experts, and (3) maintain similar local expressiveness as the full
GP for functions with notable local structures. However, naively applying
these aggregation methods into TGPs may not be practical due to insuffi-
cient target inputs. Target data is scarce and precious in transfer learning,
and hence partitioning the target inputs will probably cause significant infor-
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mation loss globally. Therefore, in this paper, we propose a novel factorized
training strategy for transfer learning, in which the target data is fully utilized
within each local expert, even as the advantages of lower computational com-
plexity and straightforward parallelization of classical aggregation models is
retained. In particular, armed with a set of trained local experts, we pro-
pose a principled method, labeled as transfer Bayesian Committee Machine
(Tr-BCM), to combine their respective predictions. It will be demonstrated
that the proposed model fully utilizes the scarce target inputs to ensure the
predictive performance of each local expert is superior to the performance of
a single-task GP trained on target data only. As far as we know, this is the
first paper introducing aggregation models in the setting of transfer learn-
ing. The efficacy of Tr-BCM is verified on toy examples as well as real-world
applications.

As a notable byproduct of the aggregation model-based approach, we find
that Tr-BCM offers enhanced expressiveness in multi-task/transfer GPs by
enabling the capture of localized inter-task relationships. According to recent
studies [30, 31], the efficacy of enhancing model expressiveness has been well-
established. In the context of knowledge transfer in particular, while a given
pair of tasks may be resolved as being globally uncorrelated, there may exist
local subspaces characterized by strong correlation. Nevertheless, naively
extending a full TGP model to learn localized source-target relationships is
proved in this paper to have no guarantee to produce a positive semi-definite
(PSD) covariance matrix. However, such issues can be easily circumvented
by applying aggregation models as shall be illustrated later on. What is
more, it is revealed that this salient feature of Tr-BCM applies with little/no
modification to the case of multi-source transfer learning problems as well;
thereby highlighting the generality of the proposed method in practice.

To summarize, the following salient features make the proposed model an
attractive proposition for the domain of transfer learning:

• We propose a new factorized training strategy and principled aggrega-
tion model, namely Tr-BCM, for transfer learning, in order to accelerate
full TGP with large-scale source inputs. The theoretical behaviors of
the proposed Tr-BCM model in comparison to other naive extensions
of model aggregation schemes are analyzed in detail.

• Flexible/non-uniform source-target similarity capture is made possible
through the proposed Tr-BCM. Therefore, the expressiveness of the
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proposed model is increased, and negative transfer is mitigated if the
source-target similarity indeed varies drastically in the input space.

• We further propose a hierarchical structure to extend Tr-BCM for deal-
ing with transfer learning problems with multiple sources. Thus, the
practical generality of Tr-BCM is greatly increased.

• Finally, when applying Tr-BCM in real-world applications, each local
expert corresponds to a lightweight predictor that can be embedded
in edge devices, thus catering to cases of online on-mote processing
[32, 33].

For a detailed exposition about the proposed model and the empirical in-
vestigation of its efficacy, the rest of the paper is organized as follows. In Sec-
tion 2, we briefly review related work in the area of adaptive transfer/multi-
task learning dealing with large-scale source inputs. After that, in Section 3,
we introduce the concept of edge intelligence in the emerging fog computing
paradigm [33], which serves as one of the key practical motivations for our
proposal of aggregation models in the setting of transfer learning. Next, we
offer a general introduction of TGP in Section 4, following which we present
our proposed Tr-BCM strategy in order to decrease the computational bur-
den of traditional TGP in Section 5. Non-uniform source-target relationship
capture and multi-source transfer learning problems are studied in Section 6
and 7, respectively. In the empirical studies of Section 8, numerical experi-
ments on real-world datasets highlight the benefits of the proposed method
in comparison to existing transfer learning approaches.

2. Related Work

In this section, we first briefly recap the recent progress towards TGPs,
then introduce different acceleration methods proposed in the literature to
reduce the computational complexity to scale GP-based methods.

The idea of transfer learning is that information shared between the tasks
leads to improved generalization performance on the target task in compari-
son to learning the target task individually [1, 18]. This idea is closely related
to multi-task learning - which aims to improve generalization performance
across multiple tasks at once. When using a GP for multiple distinct but
related outputs, the problem often reduces to developing a prior (mainly
determined by the covariance function) that expresses correlations between
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the outputs. A number of different covariance functions for multi-task GPs
have been proposed in [34, 18, 22, 35]. For example, in [18, 36], the authors
encode the inter-task correlations in a PSD matrix, with the entry in the
ith and jthe column capturing the degree of relatedness between the ith and
jth tasks. Detailed reviews on the subject have recently been published in
[37, 38].

As opposed to symmetric transfer in multi-task learning, less research at-
tention has been focused on asymmetric transfer via TGP. In [19], Cao et al.
proposed TGP to adaptively transfer knowledge from a single source task to
improve the performance of the target task by learning source-target similar-
ity. Leen et al. [35] combines the latent decision margins of multiple GPs op-
erating on the source tasks with the latent decision margin of the target task.
In [39], Wang et al. proposed to model the source task, the target task, and
the offset between using Gaussian process models, based on the assumption
that there is some smoothness in the offset over the input domain. Taking
advantage of deep GP, Kandemir [40] adopted a two-layer feed-forward deep
GP [41] as the task learner of source and target domains. More recently,
Wagle and Frew [20] proposed forward adaptive TGP, in which the training
of source task is decoupled. In [21], Wei et al. studied multi-source transfer
learning problems by stacking all the source and target models. A similar
stacking procedure was also adopted in [42], with the transfer learning GP
model applied to enhance the efficiency of Bayesian optimization. Further,
Wistuba et al. [43] proposed to combine source and target Gaussian process
models via ensemble techniques, thus the final model is a weighted sum of
all surrogates.

However, one of the major problems of the above transfer learning meth-
ods is the computational complexity during training and prediction, which
scales cubically with the number of observations. Given the huge amount of
observations that can be available from source tasks, practical use of such
methods becomes problematic, even with a small number of target training
data. To reduce the overwhelming computational burden, different accel-
eration methods have been proposed in the literature, primarily focusing
on symmetric transfer in multi-task GP, taking advantage of low-rank ap-
proximation to the full covariance matrix. The pioneering work proposed in
[18] uses Nyström approximation of the kernel matrix in the joint marginal
likelihood. Later, several different low-rank approximation methods have
been proposed in [22, 24], which are strongly related to the partially inde-
pendent training conditional [44] and fully independent training conditional
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Figure 1: The Fog extends the Cloud closer to (edge) devices producing data.

[45] approximations for a single-task GP. These approximation methods cut
the computational complexity to scale linearly with the number of observa-
tions. More recently, various methods taking advantage of variational infer-
ence [46, 47, 48] are proposed in the literature.

Nevertheless, it is noted that low-rank approximation and variational in-
ference based methods generally have a key limitation: for quick-varying
functions with significant local structures, the complete set of local training
observations may be the most compact representation than any low-rank ap-
proximation. Recent study in [49] shows, in single-task GP models, similar
local expressiveness can be maintained by using aggregation models. How-
ever, to the best of our knowledge, no aggregation models have been proposed
to tackle transfer learning problems. Therefore, in this paper, we will pro-
pose a principled aggregation model to deal with transfer learning problems
efficiently, especially those with large-scale source data.

3. Practical Motivation in Fog Computing

The IoT is capable of generating an unprecedented volume and variety
of data via cheap sensors. In the conventional cloud computing paradigm,
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Figure 2: An abstraction of Fog computing paradigm for aggregated transfer learning
models. Red dots indicate easily collected source data inputs, while green dots indicate
the scarce target data inputs. To apply the proposed Tr-BCM, only small amount of target
inputs need be broadcast over the fog (aggregation) nodes.

all the data is transmitted to the cloud/data center for processing, thus
requiring huge bandwidth cost. More importantly, by the time the data
makes its way to the cloud for analysis, the opportunity to make predictive
analysis on it might be gone or is expected to experience observable delay.
With this in mind, it is argued that the ideal place to analyze most IoT data
is near (edge) devices that produce and act on that data. Consequently,
the Fog computing (or Edge computing) paradigm, as shown in Fig. 1, has
recently been put forward in order to provide real-time/low-latency services
and decrease the bandwidth requirement. The fog nodes (also known as fog
aggregation nodes), extend the cloud to be closer to the edge by enabling
computations to be carried out at the sensors/devices that produce and act
on IoT data. In other words, it is possible for lightweight machine learning
models to be embedded at the fog nodes, such that the data streaming in from
various distributed sensors can be efficiently aggregated for high accuracy
system-level predictions/decisions. Only data that is not time sensitive need
be sent from the fog nodes to be processed in the cloud data center.

Note that in real-world IoT applications, certain types of data might be
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abundantly collected and accumulated via distributed cheap sensors (denoted
as red dots in Fig. 2), while distinct but associated high-fidelity data for
building specific target predictive models of interest may demand scarce high
precision/cost sensors (denoted as green dots in Fig. 2). In this case, trans-
fer learning becomes an appealing proposition to boost the generalization
performance on the target task. Nevertheless, traditional transfer learning
models generally require all the source and target data to be uploaded from
edge devices to the cloud, inevitably causing large amount of band-width
cost. Clearly, the transmission cost is dominated by the large amount of
source data. If a local transfer learning model utilizing only the source data
generated nearby can be embedded in each fog (aggregation) node, then data
transmission will be reduced dramatically. The framework is shown in Fig.
2, where only small amount of target data need be broadcast. Interestingly,
when applying the proposed principled aggregation model, namely Tr-BCM,
in this framework, each local TGP expert corresponds to a lightweight pre-
dictor that can be embedded in a fog (aggregation) node, thus catering to
the case of online on-mote processing.

4. Preliminary

In this section, we present a brief overview of the TGP model proposed
in [19].

4.1. Problem Specification

We first consider transfer regression problems with a single source task
and a single target task. The dimensionality of the source and target inputs
is set to d. Assume that a large source input set XS ∈ RnS×d and the cor-
responding labels yS ∈ RnS are available for the source task S, labeled as
DS = {XS ,yS}. In contrast, the inputs XT ∈ RnT ×d and the correspond-
ing labels yT ∈ RnT available for the target task T are relatively scarce
(i.e., nT � nS). The overall target dataset is denoted as DT = {XT ,yT }.
Generally, given the input x, the source and target outputs are modeled as:

yS = fS(x) + εS ,

yT = fT (x) + εT ,

where the additive noise terms εS and εT are assumed to be independent,
identically distributed (i.i.d.) Gaussian distributions with zero mean and
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variance σ2
S and σ2

T , respectively; fS and fT are the latent functions of the
corresponding tasks. The objective is to transfer knowledge from the source
task S, so as to improve the generalization performance of a predictive model
over target task T .

4.2. Transfer Gaussian Process

GP is a popular stochastic, nonparametric approach for regression. It
describes a distribution over functions, given as f(x) ∼ GP(µ(x), k(x,x′)),
where µ(x) is the mean function (typically we set µ(x) = 0) and k(·, ·)
is some valid covariance function. To be valid, any Gram matrix derived
from kernel k(x,x′) is required to be PSD. Popular kernel functions include
squared exponential (SE) and Matérn kernel. GP is a stochastic process
wherein any finite subset of random variables follows a joint multivariate
Gaussian distribution. Therefore, for a standard single-task GP, given the
observations DT = {XT ,yT } on the target task, the posterior distribution
at a particular test point x∗ is efficiently obtained [11].

In order to take advantage of abundant and perhaps correlated source
data, Cao et al. [19] proposed the TGP model to achieve adaptive knowledge
transfer while retaining the advantages of a standard GP model. The key
distinguishing feature of the TGP model is the description of the following
transfer covariance kernel:

k̃(x,x′) =


λk(x,x′), x ∈ XS & x′ ∈ XT

or x ∈ XT & x′ ∈ XS

k(x,x′), otherwise.

(1)

Here, the additional parameter λ measures the source-target similarity. Ac-
cording to Theorem 1 in [19], k̃(·, ·) is a valid kernel for all |λ| ≤ 1. If |λ| is
close to 1, it indicates that the source and target tasks are highly correlated.

As for the inference process of TGP, it is very similar to that of standard
GP. In particular, the mean and the associated variance at an unknown target
input x∗ is given by:

µ(x∗) = k̃x∗(K̃ + Λ)−1y,

σ2(x∗) = k̃(x∗,x∗)− k̃ᵀ
x∗(K̃ + Λ)−1k̃x∗ , (2)

where k̃x∗ is the kernel vector between x∗ and X = {XS ,XT } using the

transfer kernel k̃(·, ·) in Eq.(1), Λ =

[
σ2
SInS 0
0 σ2

T InT

]
, and K̃ =

[
K̃SS K̃ST
K̃T S K̃T T

]
10



is the overall covariance matrix. In K̃, K̃SS and K̃T T are the kernel matrices
of the data in the source task and target task, respectively; K̃ST (= K̃ᵀ

T S) is
the kernel matrix across source and target inputs.

During the training stage, the most commonly used approach for tuning
the hyperparameters (θθθ) of the transfer covariance function is the conjugate
gradient algorithm for optimizing the joint likelihood p(yT ,yS |XT ,XS , θθθ).
Notably, training requires the inversion of covariance matrix K̃, which re-
quires O((nS + nT )3) computations and O((nS + nT )2) memory. Given that
nS � nT , the time and memory complexity can be written as O(n3

S) and
O(n2

S), respectively. Due to the cubically scaling computational complexity
and quadratically scaling storage requirements, the practical viability of TGP
rapidly diminishes with increasing amount of source data accumulated over
time - regardless of the potentially small size of the target dataset. Thus,
the need to propose a scalable alternative over the existing TGP model is
clear. From here on, we denote the afore-described model as full TGP to
avoid possible confusions.

5. Model Aggregation for Fast Transfer Gaussian Processes

5.1. Factorized Training of Transfer Gaussian Processes

To be able to train a TGP model with large-scale source inputs using
limited (or distributed) computational resources, a factorized training process
is deemed as an efficient strategy. In this regard, a naive approach would
be to partition all the source and target inputs X into M subsets, and then
train every local TGP model with the corresponding local subset in parallel.
Larger the choice of M , lesser is the computational burden imposed on each
of the local TGPs. However, note that, given the scarcity of valuable target
data, there tends to be fewer and fewer target inputs in each local subset
with increasing M . Since training a good local TGP expert will require the
availability of a reasonable amount of target inputs, it immediately follows
that a naive extension of single-task model aggregation may not suffice in
the transfer learning case.

Thus, considering that the computational complexity of TGP training is
primarily dominated by the large amount of source inputs (as nS � nT ), we
propose to partition only the source data into M spatially disjoint subsets,
i.e., DS = {DS1 , · · · ,DSM}, with DSi = {XSi ,ySi} for i = 1, · · · ,M , to
effectively decrease the computational burden on each local TGP model.
In addition, each local expert is provided with the entire target dataset -
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without partitioning. That is, for the ith expert Mi, the corresponding
training inputs are DSi and DT . With this, the M ‘local’1 experts {Mi}Mi=1

can be trained in parallel.
During the hyperparameter learning stage of expertMi, the log marginal

likelihood computed with respect toDSi andDT , i.e., log p(yT ,ySi|XT ,XSi , θθθ),
is optimized. Specifically, the log marginal likelihood of the expert Mi is
given by

log p
(
ySi ,yT |XT ,XSi , θθθ

)
=− 1

2
[yᵀ
Si yᵀ

T ](K̃i + Λi)
−1
[
ySi
yT

]
− 1

2
log
(
|K̃i + Λi|

)
+ const, (3)

where K̃i =

[
K̃SiSi K̃SiT
K̃T Si K̃T T

]
and Λi =

[
σ2
SInSi 0

0 σ2
T InT

]
. This means that

while training the ith expert, the observations on all the other source subsets
are considered to be marginalized. A further provision made in the present
paper is that the learned hyperparameters of the transfer covariance function
are shared across all local TGP experts as a way to prevent individual model
overfitting, hence no additional hyperparameters are needed compared to the
full TGP model.

5.2. Principled Tr-BCM for Aggregative Model Prediction

Given an unknown target inputs xq
T , we consider M (Gaussian) predic-

tive distributions from {Mi}Mi=1 local TGP experts to be combined for the
final output. The corresponding unknown response variable is defined as
f q
T . Let p(f q

T |x
q
T ,DT ,DSi)2 be the posterior predictive probability density

at the query point for expert Mi, and the corresponding predictive mean
and variance are denoted as µi(x

q
T ) and σ2

i (xq
T ), respectively. Therefore, in

what follows, we propose an efficient strategy to combine these predictive
distributions in a theoretically principled manner.

The idea of the Bayesian Committee Machine (BCM) was first introduced
in [25] in the context of single-task learning. The BCM is formally equivalent
to an inducing-point model in which the test points are the inducing inputs

1Here, the term ‘local’ is defined in the context of the source data.
2Hereafter we shall omit the dependence on xqT in our notation for simplicity.
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[49]. It provides a principled strategy to combining local estimators that may
have been trained in parallel. Inspired by the mathematical derivations of
BCM, we here propose transfer BCM (Tr-BCM), as a principled approach to
combining predictions from local TGP experts.

Let DSi = {DS1 , · · · ,DSi} represent the set of all source datasets with
indices smaller or equal to i, with i = 1, · · · ,M . For the first i source
subsets DSi , we have

p(f q
T |DT ,DSi ,DSi−1

) ∝ p(f q
T |DT )p(DSi−1

|f q
T ,DT )

p(DSi |f
q
T ,DT ,DSi−1

) (4)

Note that p(f q
T |DT ) is the posterior predictive distribution using only target

training inputs, and we label the corresponding expert asMT
3. To simplify

the calculation, we make the following conditional independence assump-
tions,

p(DSi |f
q
T ,DT ,DSi−1

) ≈ p(DSi |f
q
T ,DT ) (5)

Iteratively applying Bayes’ rule, we obtain

p(f q
T |DT ,DS) ≈ const×

p(f q
T |DT ,DSM )p(f q

T |DT ,DSM−1
)

p(f q
T |DT )

≈ const×
∏M

i=1 p(f
q
T |DT ,DSi)

p(f q
T |DT )M−1

. (6)

As a consequence, the predictive distribution is still a Gaussian, with
mean and variance listed as follows:

µTr-BCM(xq
T ) = σ2

Tr-BCM(xq
T )
( M∑

i=1

σ−2i (xq
T )µi(x

q
T )

+ (1−M)σ−2T (xq
T )µT (xq

T )
)
,

σ2
Tr-BCM(x∗) = 1/

( M∑
i=1

σ−2i (xq
T ) + (1−M)σ−2T (xq

T )
)
, (7)

3No extra training procedure is necessary for modelMT , since a common target model
with shared hyperparameters can be obtained after marginalizing out the corresponding
source subsets for every local TGP model.
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where µT and σ2
T are the predicted mean and variance of the expert MT .

From the predictive distribution, it is easy to observe that the overall weight
assigned to the expert Mi in the predictive mean is inversely proportional
to its variance. This implies that those experts with more confident predic-
tion are automatically assigned higher responsibility in an input dependent
manner.

Observe that unlike single-task BCM, where the “correction” term for the
predictive variance is the prior variance k∗∗ = k(xq

T ,x
q
T ) [27], the posterior

σ2
T is used to rectify the predictive variance of Tr-BCM. This is caused by

the fact that in Tr-BCM, the whole target data is fully utilized across every
local expert, guaranteeing quality predictions from each local expert.

When applying the proposed Tr-BCM in the setting of Fog computing,
as illustrated in Fig. 2, each local TGP expert can be embedded in a fog
(aggregation) node. It is observed that each local TGP expert only uti-
lizes the target data and a single source subset, which is generated by the
nearby sensors. Therefore, the large amount of source data is processed in a
distributed manner in relatively lightweight local experts directly at the fog
nodes, avoiding the cost of transmission to the cloud. Only the small amount
of target data need be broadcast among the fog nodes. When making pre-
dictions, the predictive means and variances of each local expert are shared
or transmitted to the cloud. Thereafter, the proposed Tr-BCM is invoked to
combine the predictions in a theoretically principled manner.

5.3. Alternative Heuristic Model Aggregations

Apart from the principled Tr-BCM, it is possible to construct alternative
model aggregation schemes based on (related) heuristically defined proce-
dures that have recently been developed for large-scale single-task GPs. A
prominent example among them is the product of experts (PoE) [26]. In the
PoE, all the predictive distributions at xq

T from a set of local estimators are
directly multiplied, and the product is proportional to a Gaussian distribu-
tion if every local predictive distribution is a Gaussian. Similarly, in the case
of transfer learning, the final output distribution can be directly set as pro-
portional to the product of all the predictive distributions from the M local
TGP experts, with the resultant mean and variance listed as follows:
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µPoE(xq
T ) = σ2

PoE

M∑
i=1

βiσ
−2
i (xq

T )µi(x∗),

σ2
PoE(xq

T ) = 1/
( M∑

i=1

βiσ
−2
i (xq

T ))
)
, (8)

where the heuristically incorporated tunable parameter βi is set to 1 for
i = 1, · · · ,M .

From Eq.(8), observe the familiar property that experts which are uncer-
tain about their predictions are automatically weighted less than those which
are more confident about their predictions. However, with an increasing num-
ber of TGP experts, Eq.(8) implies that the predictive variance σ2

PoE(xq
T )

monotonically decreases, leading to unreasonably overconfident predictions.
Therefore, the PoE model is inconsistent in the sense that it does not fall
back to the prior outside the regime of the training dataset [27]. To overcome
the evident issue of the PoE aggregation approach, it has been proposed in
the literature to simply set

∑M
i=1 βi = 1. The corresponding model is labeled

as generalized PoE (gPoE). Accordingly, in this paper, we set βi = 1/M ,
so that the predictive means of PoE and gPoE are identical, and only the
predictive variances are adjusted.

5.4. Empirical Analysis of Various Aggregation Models

We analyze and compare the Tr-BCM, PoE, and gPoE methods using a
1-D toy example. In this toy example, a single source and target inputs are
sampled according to a full TGP model with source-target similarity λ = 0.5
and squared exponential kernel with pre-specified hyperparameters. There
are a large number (1,000) of source inputs sampled uniformly at random
from the range [−1, 1], and 5 target inputs sampled from the range of [0, 1].
We partition the source training inputs into two disjoint subsets. Thus, the
predictive distributions of the two local TGPs, M1 and M2 are displayed
in 3(a) and 3(b). The resultant predictions from the three different model
aggregation schemes are presented in 3(c-e), with each compared against the
predictions made by the full TGP model. Our goal is to test how closely the
proposed lightweight aggregation schemes can replicate the full TGP model.

Clearly, the predictive performance of Tr-BCM as shown in Fig. 3(c) is
the best approximation of the full TGP model among all the aggregation
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(a) (b)

(c) (d) (e)

Figure 3: Toy example of aggregation of two local TGP experts. In (a) and (b), for each
model, we present the predictive mean (black curve) while the gray shaded region denotes
the standard deviation. The “◦” symbols represent the 5 target training samples. c-e
aggregated predictions (in blue) from Tr-BCM, PoE, and gPoE compared against the full
TGP model prediction (in gray black).

models. For the PoE in Fig. 3(d), the problematic overconfident prediction
(with unreasonably low variance) is verified. What is more, the predictive
mean of PoE does not align well with the full TGP either. In contrast to PoE,
gPoE seems to make more consistent predictions of the predictive variance,
as displayed in Fig. 3(e).

5.5. Theoretical Analysis of Various Aggregation Models

We further analyze and compare the theoretical behavior of the proposed
Tr-BCM against PoE and gPoE. To simplify our analysis, we assume that
stationary and monotonic kernel is applied. All source subsets are spatially
disjoint, such that k(x,x′) ≈ 0, for x ∈ DSi and x′ ∈ DSj , when i 6= j. In
the following, we will analyze the predictive behavior on an unknown query
points xq

T under two circumstances. One case is that xq
T is distant from all the

source subsets. The other case is that xq
T falls within the regime of a specific

source subset. The proposed Tr-BCM model is proved to output consistent
predictive distributions with the ones made by the full TGP model.
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In the first case, xq
T is distant from all source subsets, meaning that

k(xq
T ,x) ≈ 0, for all x ∈ DSi , i = 1, · · · ,M . Thus, the predictive distribu-

tions of all the local TGP experts p(f q
T |DT ,DSi) and the full TGP model

p(f q
T |DT ,DS) fall back to the prediction of MT , i.e.,

p(f q
T |DT ,DS) ≈ p(f q

T |DT ,DSi) ≈ p(f q
T |DT )

= N (µT (xq
T ), σ2

T (xq
T )), i = 1, · · · ,M. (9)

According to Eq.(7) and Eq.(8), Tr-BCM and gPoE can produce the same
predictive distributions as the one made by the full TGP model, while PoE
makes unreasonably overconfident predictions as limM→∞ σ

2
PoE(xq

T ) = 0.
In the second circumstance, xq

T falls within the regime of a specific source
subset - say the ith expert. Therefore, we have:

p(f q
T |DT ,DS) ≈ p(f q

T |DT ,DSi) = N (µi(x
q
T ), σ2

i (xq
T )),

p(f q
T |DT ,DSj) ≈ p(f q

T |DT ) = N (µT (xq
T ), σ2

T (xq
T )), j 6= i. (10)

According to Eq.(7), the aggregated predictive distributions of Tr-BCM are
equivalent to the ones made by the full TGP model. The PoE aggregation
scheme continues to make characteristic overconfident predictions. For the
gPoE, from Eq.(8) - with βi = 1/M - we find that with increasing number
of experts, the predictive variance can be written as limM→∞ σ

2
gPoE(xq

T ) =
σ2
T (xq

T ). In addition, according to Proposition 1 in [36], given the availability
of related source data (|λ| > 0), we have σ2

i (xq
T ) < σ2

T (xq
T ). These facts

imply that since the aggregated predictive distribution of gPoE falls back
to the prediction of single-task expert MT , the predictive behavior of gPoE
theoretically tends to be over conservative compared to full TGP.

In summary, the theoretical behavior of the proposed model, namely Tr-
BCM, is consistent with the full TGP model. In contrast, the heuristically
defined PoE and gPoE aggregation schemes tend to make overconfident and
over-conservative predictions, respectively.

5.6. Computational Complexity and Memory Consumption

As elaborated earlier, the O(n3
S) computational complexity and O(n2

S)
storage requirement are bottlenecks to scale a full TGP model to tackle prob-
lems with large-scale sources. To overcome this issue, we have put forward a
theoretically principled Tr-BCM model that partitions the source data into
disjoint subsets so as to build lightweight local TGP experts. Here, we ana-
lyze the complexity of the Tr-BCM approach. We refer to Eq.(3) which points
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to the inversion of matrix (K̃i+Λi), for i = 1, . . . ,M . ExpertMi will require
O((nSi + nT )3) computations and O((nSi + nT )2) memory space. Therefore,
the overall factorized training process requires O(M × (nS/M + nT )3) com-
putations and O(M×(nS/M+nT )2) memory, assuming uniform source data
partitioning. In the present paper, we set M ≈ nS/(2nT ) in the experimental
study to enable sufficient source-target knowledge transfer. Accordingly the
overall training complexity decreases to O(27

2
nSn

2
T ), and the memory cost

reduces to O(9
2
nSnT ). In other words, both quantities scale linearly with the

number of source observations; thereby making Tr-BCM a viable option for
lightweight online on-mote processing on edge devices.

6. Enhanced Expressiveness with Tr-BCM: Local Inter-Task Sim-
ilarity Capture

Recent progress towards adaptive multi-task/transfer GP has shown that
the expressiveness of a model can be enhanced by exploiting spatially adap-
tive inter-task relationship [30, 31]. However, most existing approaches for
adaptive multi-task/transfer learning have been focused on fixed correlations
among output variables. In other words, it has been assumed that the source-
target relationship can be captured by a single scalar parameter, and is uni-
form everywhere in the input space. The same is seen to be true for the full
TGP model, where a single parameter (λ) is used to capture source-target
similarity. However, this assumption is often found to be too strict for real-
world applications. Therefore, in this section, we explore the possibility of
equipping traditional transfer learning with the ability to learn non-uniform
inter-task relationship through a simple adjustment to Tr-BCM.

Taking advantage of the partition of source dataset into M disjoint sub-
sets, a straightforward approach to capture localized inter-task similarity
would be to apply the following localized transfer covariance function:

k̃(x,x′) =


λik(x,x′), x ∈ XSi & x′ ∈ XT

or x ∈ XT & x′ ∈ XSi
k(x,x′), otherwise,

(11)

where λi indicates the localized inter-task similarity between the ith source
subset Si and the target task T . Using this transfer covariance function, lo-
calized inter-task relationship is learned between the different source subsets
and the target data.
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Let Kf ∈ R(M+1)×(M+1) represent a matrix capturing the inter-task (be-
tween source and target) and intra-task (between different source subsets)
similarities. Naturally, the similarity across data subsets belonging to the
same source task can be assumed to be 1. Accordingly, Kf is expressed in
the following form:

Kf =


1 1 · · · 1 λ1
1 1 · · · 1 λ2
...

...
. . .

...
...

1 1 · · · 1 λM
λ1 λ2 · · · λM 1

 . (12)

In order to guarantee that the localized transfer covariance function in Eq.(11)
is always PSD given a valid kernel k(·, ·), it suffices for us to show that Kf is
a PSD matrix [18]. The following theorem gives the necessary and sufficient
condition for a PSD Kf .

Theorem 1. The matrix Kf is PSD if and only if λ1 = λ2 = · · · = λM , and
|λi| ≤ 1, for all i = 1, 2, · · · ,M .

Proof. Necessary condition: A principal minor of any matrix A is defined as
the determinant of a principal submatrix of matrix A. Let A be an sym-
metric matrix. Then A is PSD if and only if every principal minor of A is
nonnegative [50]. Therefore, given Kf is PSD, for a 2 × 2 principal subma-

trix Kf
i =

(
1 λi
λi 1

)
, we have |Kf

i | = 1 − λ2i ≥ 0. Therefore, |λi| ≤ 1, for

i = 1, · · · ,M .

Further, for a 3 × 3 principal submatrix Kf
ij =

( 1 1 λi
1 1 λj
λi λj 1

)
, we have

|Kf
ij| = −(λi − λj)2 ≥ 0. Thus, we have λi = λj.
Sufficiency condition: Let λ1 = λ2 = · · · = λM = λ and |λ| ≤ 1. Accord-

ing to Theorem 1 in Cao et al. [19], it follows that Kf is PSD since a matrix
of all ones is PSD.

According to the above theorem, all the local source-target similarities
take the same value in order to guarantee the validity of the transfer covari-
ance function of Eq.(11). However, such a condition hampers the original
intention of partitioning the source data into local subsets to learn localized
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inter-task relationship between each source subset and the target task. Thus,
training a full TGP with the localized transfer kernel is not guaranteed to
be feasible.

In contrast, Tr-BCM can easily avoid this issue by neglecting the cor-
relations between different source subsets, as only the correlations between
the individual source subsets and the target task are considered separately
under a conditional independence assumption. Taking this cue, we slightly
relax the provision for sharing a single set of hyperparameters across all local
TGP experts in Tr-BCM, and allow localized λi’s for each local model to
be learned. All other hyperparameters of the covariance function continue
to be shared. After the factorized training stage, if we marginalize out the
source subsets, a common target expertMT will still be obtained. Therefore,
during prediction, Eq.(7) for Tr-BCM can be directly applied.

It is observed that if the ith local expert learns a high source-target
correlation, i.e., |λi| → 1, then predictions within its local region will be
highly supported by the local subset of the source data. On the contrary, if
λi is learned to be close to 0, then there is little knowledge transferred from
the corresponding source subset to the target task. As there is no restriction
placed on the λi’s to be uniform across the M subsets, the non-uniformity of
the source-target similarity distribution is practically addressed.

To provide insights on the behavior of the Tr-BCM model with localized
inter-task similarity capture (labeled as Tr-BCM-ls), we consider a toy ex-
ample. The generation of the synthetic dataset is carried out as follows.
100 data points are randomly sampled from each of the two 1-D functions
fS = sin(|x|) and fT = sin(x), −5 ≤ x ≤ 5, both corrupted by a zero-mean
Gaussian noise with variance equal to 0.1. The first function is taken as
source task, and the second function is taken as target task. 5% of the target
data points are used for training, and the rest are used for testing. After
training the conventional full TGP model, we obtain that the source-task
similarity is λ ≈ 0, implying that the source and target tasks are nearly un-
correlated globally. As a result, the performance of TGP is somewhat similar
to that of single-task GP, showing that there is nearly no knowledge transfer
from source task to target task.

Nevertheless, it is apparent from the function forms of fS and fT that
there naturally exist two regions in the input space where the source and
target tasks are indeed correlated. In particular, the task pairs are strongly
positively correlated when x >= 0, and strongly negatively correlated when
x < 0. Accordingly, we partition the source data into 2 subsets, i.e., DS1 =
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Figure 4: Predictive distribution of GP, full TGP and the proposed Tr-BCM. Shaded area
denotes the predicted standard derivation of the corresponding probabilistic output. The
starred points are the training data of the target task.

{xi >= 0 : xi ∈ DS} and DS2 = {xi < 0 : xi ∈ DS}. By applying the
proposed factorized training with localized inter-task similarity capture, we
find that two different source-target similarities (-0.99 and 1.00) are indeed
learned, closely matching the true underlying distribution of inter-task sim-
ilarity. The predicted distribution of Tr-BCM-ls is shown in Fig. 4. Using
only 5% of the target data, the proposed method can almost exactly recover
the target function fT by adaptively taking advantage of the knowledge con-
cealed in the source task, highlighting the efficacy of the proposed method.

In order to quantify the averaged generalization performance on the test
set over 10 trial runs, we present root mean square error (RMSE4) results
in Table 1. The results in Table 1 also contain the case of Tr-BCM-ls with

4RMSE is computed as
√∑ntest

i=1 (yi−µ(xi))2

ntest
on test samples, where yi is the label of xi,

and µ(xi) is the predicted mean of xi on target task T .
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Table 1: Averaged RMSE on toy example

Methods RMSE

GP 0.42623 ± 0.0084
full TGP 0.45456 ± 0.0004

Tr-BCM-ls (M = 2) 0.1050 ± 0.0040
Tr-BCM-ls (M = 10) 0.12681 ± 0.0176
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Figure 5: Hierarchical structure of multi-source Tr-BCM.

M = nS/2nS = 10 (k-means is used to partition the source dataset). Tr-
BCM-ls with M = 10 outperforms full TGP and GP with a large margin.
However, Tr-BCM-ls with M = 2 slightly outperforms Tr-BCM-ls with M =
10, as in the former case prior knowledge about the underlying distribution of
source-target correlation was utilized while partitioning the source datasets.

7. Extensions of Tr-BCM to Multi-Source Transfer Learning

Given the proposed relaxation of Tr-BCM with localized inter-task re-
lationship capture, a similar scheme can be immediately used to deal with
multi-source transfer learning problems as well.

With research efforts largely confined to the single-source setting [19, 1],
an increasing amount of studies are contributing to a realistic applicability
of transfer learning by addressing the multi-source scenario - where different
sources have differing degree of inter-task relationship with the target [21].
By ignoring the interactions among the different source tasks, the relaxed
Tr-BCM formulation can be directly applied to tackle multi-source transfer
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Table 2: Results on the real-world datasets. The averaged RMSEs of different approaches
for Wine and error distance (in meter) for UJIIndoorLoc are reported. Superior perfor-
mance are highlighted using bold characters.

Methods Wine UJIIndoorLoc

Tr-BCM 0.7074±0.0022 6.8197±0.0711
(g)PoE 0.7562±0.0008 7.4277±0.0111

full TGP 0.7739±0.0207 6.9279±0.0164
GP 0.7619±0.0019 7.6545±0.0001

TSGP 0.7675±0.0056 7.5631±0.0001
TrAdaBoost.R2 0.8053±0.0111 39.448±0.0003

learning problems. Accordingly, in the following, we propose a hierarchical
structure of Tr-BCM to tackle these kinds of problems.

Say there are P source tasks S(1), · · · ,S(P ) and one target task T . We
assume all the tasks are defined in a common input space with dimensionality
d. For the pth source task, the corresponding training data is labeled as

D(p)
S = {X(p)

S ,y
(p)
S }, where X

(p)
S ∈ Rn

(p)
S ×d and y

(p)
S ∈ Rn

(p)
S . To accelerate

the computational process, D(p)
S is partitioned into Mp = n

(p)
S /2nT local

blocks. Hence, M =
∑P

p=1Mp TGP experts undergo factorized training
in parallel. Notice that each source task possesses a unique noise level and
source-target similarity, while all the other hyperparameters are shared across
all the experts. Fig. 5 shows the hierarchical structure of the proposed model.
The aggregated predictive distributions are directly calculated using Eq.(7).

8. Experimental Study

8.1. Medium-scale Datasets

In the following, we conduct experiments on two UCI datasets with a
single source task with medium-sized source training inputs. In addition to
the proposed Tr-BCM and the direct extension of (g)PoE, we present re-
sults obtained from standard GP, the full TGP model, implementations of
Transfer Stacking GP (TSGP) [42], and TrAdaBoost.R2 [51] for regression
transfer. For all the aggregation models, the number of experts is set as
M = nS/(2nT ), and we use k-means to partition the source data. In the
following, only predictive mean is used to measure the generalization perfor-
mance, therefore, PoE and gPoE serve as referred as one model.
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Figure 6: The averaged training time for each method.

8.1.1. Wine Quality Dataset

The wine dataset [52] is related to red and white wine samples, and the
goal is to model wine quality based on physicochemical tests including PH
values, etc (in total 11 features). The labels are given by experts with grades
between 0 (very bad) and 10 (very good). There are in total 4898 records,
among which 1599 are for the red wine, and 4898 are for the white wine. In
the experimental study, the quality prediction for the white wine is used as
the source task, and the quality prediction for red wine is taken as the target
task. 5% of the available target data is used for training, and the remaining
is used for evaluation.

8.1.2. WiFi-based Indoor Localization

The WiFi-based indoor localization system aims to detect the location of
a client device given the signals received from various access points. Given the
ever-expanding scale of WiFi deployments in metropolitan areas, WiFi-based
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localization gains its importance and popularity due to the many AI and
ubiquitous computing applications. However, most localization techniques
require a training set of signal strength readings labeled against a ground
truth location map. Training data of the target task is precious due to the
heavy reliance on the ground truth calibration. Therefore, transfer learning
becomes more appealing as fruitful knowledge from some source data can
be utilized to decrease the workload of calibrating the target data. In the
experimental study, we randomly choose two floors in one building as source
and target task. Therefore, there are 1137 source inputs, 78 target training
inputs and 1486 test samples.

All the experiments are conducted over 10 repetitions. The results are
presented in Table 2. Note that the proposed Tr-BCM performs the best over
the other compared methods. What is more, single-task GP outperforms full
TGP. The reason is probably that optimizing the joint likelihood over source
and target inputs may bias the TGP model towards the source task since
nT � nS . On the other hand, in the proposed factorized training scheme,
the training data for each expert is more balanced since within each local
expert, the number of source inputs is limited to be twice that of target
inputs. TrAdaBoost.R2 is always found to perform the worst over all the
methods. This is consistent with the experimental results reported in [21].

Further, we record the training time of all the transfer learning methods,
which are reported in Fig. 6. Note that there are more source inputs for Wine
data than in UJIIndoorLoc. As a result, the proposed factorized training for
transfer learning shows its advantages with larger source inputs. Comparing
the number of source inputs for the two datasets, the runtime for the proposed
factorized training does not increase drastically with the increased number of
source inputs (scales linearly), while training time for other methods increases
drastically (scales cubically).

Table 3: Results on the large-scale datasets. The RMSEs of different approaches are
reported for SARCOS. Superior performance are highlighted using bold characters.

Methods RMSE

Tr-BCM 5.8715±0.9077
(g)PoE 6.1557±1.1485

GP 14.8993±5.7632
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Figure 7: The averaged RMSE over 10 runs for (g)PoE, and Tr-BCM with increasing
number of source tasks.

8.2. Large-scale Dataset

The SARCOS dataset [19] relates to an inverse dynamics problem for a
seven degrees-of-freedom anthropomorphic robot arm. The task is to map
from a 21-dimensional input space (7 joint position, 7 joint velocities, 7 joint
accelerations) to the corresponding 7 joint torques. Therefore, the input has
21 dimensions and there are 7 tasks for each input. The original problem is
of multi-output regression. In this experiment, we use the first joint torque
as the target task, and the remaining six joint torques as six different source
tasks. 5% of the available target data is used for training, and the remain-
ing is used for evaluation. For the source tasks, we randomly choose 30,000
points in total. With huge amount of source inputs, most traditional GP-
based methods become impractical. As we compare the aggregation models
Tr-BCM and gPoE to a standard single-task GP, a huge performance en-
hancement is observed as shown in Table 3. Notably, Tr-BCM outperforms
(g)PoE.

We have also analyzed the effect of increasing number of sources. Using
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factorized training, we first jointly train the six source tasks and target task.
During prediction, we consider different cases in which the number of sources
is gradually increased. The predictive performance of Tr-BCM and (g)PoE
is shown in Fig. 7, averaged over 10 repetitions. With increasing number of
source tasks, Tr-BCM is found to significantly improve its performance with
the availability of more source inputs, while the performance enhancement
for (g)PoE is only marginal.

8.3. Conceptualized Fog Computing Application

We conceive a real-world scenario in air quality prediction5, where we
want to predict the concentration of PM2.5 (considered to be scarcely avail-
able target data represented by green dots in Fig. 2), which is a crucial
standard for clean air quality. However, the corresponding data is relatively
hard to collect. The concentration level of PM2.5 is probably closely related
to wind speed (considered to be widely accessible source data represented by
red dots in Fig. 2). The data for wind speed is easy to collect by say multiple
unmanned aerial vehicles (UAVs) flying over disjoint local areas. In other
words, the UAVs may be seen as distributed fog nodes collecting source data
with which the target predictions can be augmented. A local TGP model
can thus be embedded into each UAV for online on-mote processing 30 UAVs
(i.e., 30 fog nodes), and only 34 air quality stations constantly monitoring
the concentration level of PM2.5.

Among all the target samples, 10 of them are randomly picked for train-
ing, and the remaining inputs are used for evaluation in our experimental
study. We also explore the possibly non-uniform inter-task similarity in dif-
ferent local areas as a consequence of different localized geographical land-
scape characteristics. To this end, the Tr-BCM-ls model, as put forward
in Section 6, is applied. The experimental results are shown in Table 4.
Note that Tr-BCM-ls outperforms Tr-BCM, verifying our conjecture that
the inter-task relationship probably varies with different geo-locations.

9. Conclusion

In this paper, we have introduced a theoretically principled aggregation
model, namely transfer Bayesian Committee Machine (Tr-BCM), for transfer

5https://biendata.com/competition/kdd_2018/
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Table 4: Results on the conceived fog computing application. The averaged RMSEs
of different approaches are reported. Superior performance are highlighted using bold
characters.

Methods RMSE

Tr-BCM 30.7251±6.4189
Tr-BCM-ls 28.5832±7.2159

GP 31.5839±4.0998

learning with large-scale source inputs. The salient features of Tr-BCM are
three-fold: (1) it offers a distributed lightweight alternative that is capable of
replicating the full (heavyweight) TGP model; (2) by relaxing the uniformity
condition on inter-task similarity capture, Tr-BCM can even enhance model
expressiveness compared to TGP; (3) the relaxed Tr-BCM formulation di-
rectly applies to the multi-source transfer learning scenario where different
sources can have differing inter-task relationship with the target.

The proposed aggregation model has been applied to synthetic as well
as real-world datasets, with the experimental results verifying its efficacy
over existing state-of-art transfer learning methods. Compared to traditional
transfer learning methods, the accuracy and scalability of Tr-BCM are both
theoretically and empirically shown to be superior with increasing amounts
of source data, i.e., Wine, UJIIndoorLoc, and SARCOS. Interestingly, when
deploying the proposed aggregation approach in certain distributed practical
settings, each local expert serves as a lightweight predictor that can be em-
bedded in edge devices, thus potentially catering to cases of online on-mote
processing in fog computing environments.

Finally, with regard to future work, we note that the performance of the
proposed Tr-BCM (and aggregation models in general) is at times sensitive to
the data partitioning. In this regard, one promising direction is to incorporate
sparse approaches and variational inference into our aggregation models in
order to dynamically allocate data points to each local model in a more
principled manner.
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