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Abstract—This paper addresses an optimal path problem in
which the travel time is subject to uncertainty. Many relevant
works in the literature model the uncertainty using a random
variable, however in many cases the underlying distribution of
the uncertainty is not precisely and a solution obtained under
a presumed distribution can perform poorly in practice. In this
work we assume only the lower bound and upper bound of the
uncertainty is known, and by only making use of such information
we determine a solution using robust optimization techniques.
The solution is robust in the sense that a pre-specified travel time
target can be guaranteed for a uncertainty set that is maximized.
Additionally, the robust optimization problem is not necessarily
to be solved, and its solution can be obtained by solving and
updating a deterministic problem using existing approaches such
as Dijkstra approach several times. This makes the proposed
approach applicable to large problem instances. The performance
and advantages of the proposed approach is demonstrated by
numerical experiments.

I. INTRODUCTION

Shortest path problem is important in applications in many
fields of engineering, logistics and science. Usually, a network
consisting of a number of nodes and arcs connecting nodes is
considered. Certain costs associated arcs are used to describe
distance, travel time or other measurement of the arcs. Given
a starting node and a destination node, the general problem is
to find a path connecting the two nodes while at same time
minimizing the cost of the path. There is a rich literature in the
research of such problem and its variants. Initially, everything
including the structure of the network and costs of arcs are
assumed fixed and known, and such problem is referred to
as a Deterministic Problem. A number of well-known results
were developed for deterministic shortest path problem over
fifty years ago [1], [2], [3].

Although the algorithms for the determination of the short-
est path in a deterministic problem is quite efficient, the
real-world problems are always far from deterministic. For
example, the travel time within a transportation network is
always stochastic and/or time-dependent. Hence, the solution
of a deterministic problem may have poor performance in
a stochastic setting. To address this issue, one option is to
minimize the mean travel time and the resultant path is often
referred to as path with least expected time (LET) [4]. For time
invariant stochastic network, the LET path can be found simply
by solving a deterministic problem with costs of arcs set to
the mean values. However, to know the travel time distribution
is of more interest than a known mean. Towards this end, the
research work of [5] proposed an approach to determine the

probability distribution function of the minimum travel time
path in a stochastic stationary network, the research work of [6]
proposed a optimality index for comparison of different paths
in the network, and a number of other works also consider
similar problems [7], [8], [9]. In some case, the mean of the
travel time distribution is not of top concerns of users. In this
case, it is reasonable to use various utility functions to describe
the preferences of users and optimize the value of the utility
function. Typical works in this direction include [10], [11],
[12], [13].

In contrast to stationary stochastic network, it is more
challenging to determine a shortest path in a time-varying
stochastic network. The work of [14] considers such a problem
and shows that traditional method for deterministic network
may not work in such time-varying stochastic network. It
also argues that the optimal path is an adaptive decision rule
and proposes an approach for the determination of such a
rule. A similar problem is also considered in [15] where the
focus is one a dynamic stochastic traffic network. A heuristic
algorithm based on the k-shortest path algorithm is proposed
to determine a shortest path. The work of [16] proposes two
algorithms for the determination of least possible travel time
and the probability of the occurrence of such travel time
for the travel between any two nodes in a traffic network.
Other works concentrating on stochastic time-varying networks
include [17], [18], [19], [20]. Specifically for stochastic vehicle
routing problem which is a special type of problem, there is a
rich literature [21], [22], [23] and still remains active.

In some works in the literature, the concept of travel
time target or reliability was proposed as preference for
paths. For example, the works [4], [5] and [6] all try to
determine a path that maximize the probability of achieving
a pre-specified travel time target. The major challenge of the
proposed approaches is that multi-dimensional integral has to
be conducted to evaluate and compare feasible paths, which
requires a tremendous computation resources and makes the
approaches only applicable to only small-scale instances. To
overcome this difficulty, the work of [24], [25] propose a
dynamic programming approach which decomposes the large
problem into multi-stage small problems to reduce computa-
tional complexity. Another trick is to use appropriate utility
functions to reflect the preference for a travel time target or
travel time reliability [10].

One common assumption in most of the works in the
literature of optimal paths in stochastic networks is that the
distribution function of the underlying uncertain factor, for



example travel times, is known no matter whether is stationary
or time-varying. The distribution function plays an important
role in the computation of the distribution of total travel time
and probability of fulfilling certain travel time target. However,
in reality the distribution function may not be precise as it is
obtained from limited historical data, and sometimes the dis-
tribution is totally unavailable. In such cases, the performance
of a solution that is tuned according to a presumed distribution
can deteriorate a lot in practice. To handle problems with
little or unreliable distribution information of the underlying
uncertain factors, this paper propose an approach based on
Robust Optimization (RO).

Robust Optimization, originally addressing optimization
under uncertainties, experienced explosive growth in the last
decade. Initially, the purpose of robust optimization is to im-
munize uncertain mathematical optimization problems against
in-feasibility while preserving the tractability of models, see
[26], [27], [28], [29], [30], [31], [32], [33]. Most robust
optimization approaches share the following two merits: (1)
Only limited knowledge of underlying uncertain parameters is
used. In most of the early works in the literature, only support
set of the uncertain parameters is assumed and used and later in
some application support set and mean are assumed to achieve
additional theoretical results [34]. (2) The tractability of the
original optimization problem can be well preserved by robust
optimization techniques, i.e. the robust counterpart of a LP
problem remains a LP problem if the uncertainty variable is
characterized by linearly constrained support set and remains a
second-order cone optimization problem (SOCP) if the original
optimization and the uncertain support set is second-order cone
describable.

This paper proposes an approach using Robust Optimiza-
tion techniques for the determination of a path with enhanced
travel time reliability in a stochastic traffic network. The
proposed approach makes use of limited information of the
uncertain factors, and hence provides a solution that is robust
against distributional uncertainty. A travel time target is also
taken into consideration, and the travel time reliability is
enhanced in term of that the possibility of fulfilling the travel
time target is optimized. Although the approach is presented
in the context of a traffic network in this paper, the idea
is applicable to path determination problem in any weighted
stochastic network with minor changes.

The rest of this paper is organized as follows. Section II
describes the problem we consider and also the notations used
in through out the paper. Section III introduces the mathe-
matical formulations, including deterministic, stochastic and
robust ones, for path determination. Section IV demonstrate the
proposed approach and show its advantages using numerical
experiments. The last section concludes the paper and also
suggests future research directions.

II. PROBLEM DESCRIPTION

We consider a typical directed network with N nodes
indexed by 1, 2, . . . , N . We use N to represent the index set
of nodes, i.e. N := {1, 2, . . . , N}. Directed arcs connect two
different nodes and we let A := {(i, j)|i, j ∈ N} represent
the set of node-pairs that has a arc from node i pointing to
node j. Associated with each arc (i, j) in A, there is a travel

time, denoted by c̃ij . In general, each c̃ij is a random variable
and does not change with time, i.e. stationary. In practice or
earlier literature, c̃ij can be modeled in the following ways.

M1 a deterministic reference point ĉij .
M2 a lower bound cij , an upper bound c̄ij , and a reference

point ĉij .
M3 a number of samples czij , z = 1, 2, 3, · · · .
M4 a known distribution function.

Most of the works in the literature use M4 as the model
of c̃ij , or use M3 to estimate a M4 model for c̃ij . In this
paper, we rely mainly on M2 to determine an optimal path. In
most cases in practice, a number of samples of c̃ij is available,
but the sample size is not big enough for a good estimation
of the distribution function or the sample set has certain bias
due to time-varying nature of the uncertainty. Therefore, it
is a good choice to use M2 to describe the uncertainty. The
reference point c̄ij could be the mean or the mode of the
sample set. The lower and upper bound could be the estimated
using reference point plus and minus triple sample standard
deviation, or simply using the minimum or maximum value of
the sample set.

Given a starting node s and a destination node d in the
network together with its structure and travel time parameters
(reference points and bounds), our goal is to determine an path
that is optimal in certain way. We will discuss how to measure
the optimality of a path in details in the next section.

Fig. 1: Example of a routing problem

The model and the path determination problem
is illustrated by an example shown in Figure
1. For this network, N = {1, 2, 3, 4, 5, 6},
A = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 6), (5, 6)}.
Suppose for c̃12 we have 5 samples: {1, 1.1, 1.1, 1.3, 1.5}.
The reference point ĉ12 could be either the mean 1.2 or the
mode 1.1 of the sample set. The support set could use the
minimal and maximal values as bouds, [1, 1, 5], or use mean
plus and minus triple sample standard deviation, [0.6, 1.8].
It depends on user’s confidence level about the data set and
preference of uncertainty.

Based on the description in this section, notations of
parameters and sets thorough out this paper is summarized
in Table I.

III. MATHEMATICAL FORMULATION

In this section, we discuss mathematical formulations that
determine a path that is optimal according to different criteria.
In order to formulation the optimization problems, we define
binary decision variable xij for each arc (i, j) ∈ A. xij = 1
means the associated arc is in the path, and 0 otherwise.



TABLE I: Notation

Parameter: N : number of nodes.
c̃ij : travel time between Node i and j, described by

1) simply a deterministic reference point ĉij , or
2) support set [cij , c̄ij ] and a reference point ĉij , or
3) a number of samples csij , s = 1, 2, 3, · · · , or
4) a distribution function.

s: index of starting node
d: index of destination node

Set: N : index set of nodes {1, 2, . . . , N}
A: index pairs (i, j) for all arcs in the network,

with Node i being the starting node.
Variable: xij : binary variable, xij = 1 if the Arc (i, j) is in the route.

For the decision variables {xij} to describe a route from
the starting node to the destination node, the decision variables
must satisfy the following constraints∑

j:(s,j)∈A

xsj = 1, (1a)

∑
i:(i,d)∈A

xid = 1, (1b)

∑
j:(i,j)∈A

xij ≤ 1, i ∈ N , (1c)

∑
i:(i,j)∈A

xij =
∑

k:(j,k)∈A

xjk, j ∈ N/{s, d}. (1d)

Constraint (1a) ensures that Node s is the starting point of the
path and multiple revisit of the same node is filtered out as
it is not an optimal path. Constraint (1b) ensures that Node
d is the end of the path and the node is visited only once.
Constraint (1c) ensures that each node is visited at most once.
Constraint (1d) ensures the continuity of the path. In short,
{xij} satisfying Constraint (1) defines a path connecting Node
s and Node d, and we collect all such decision variables in
the following set

F := {{xij}| xij , (i, j) ∈ A satisfy (1)}. (2)

Given a set of decision variables {xij} ∈ F and c̃ij of arcs,
the travel time of the associated route is

T̃ :=
∑

(i,j)∈A

c̃ijxij . (3)

A. Existing formulations

If c̃ij is modeled by M1, then T̃ is deterministic and a
path can be determined by solving a deterministic optimization
problem. Additionally if ĉij is the mean of c̃ij , then a path with
the minimum mean travel time can be determined by solving
the same optimization problem, which is given below.

Deterministic Formulation:

DP ({ĉij}) :

min
∑

(i,j)∈A

ĉijxij (4a)

s.t. {xij} ∈ F (4b)

In other cases, the travel time is modeled by M4, then T̃
is a random variable. A pre-specified travel time target τ is
of the most interest and we want the probability of T̃ being
less than the travel time target to be as much as possible, i.e. a
reliable travel time. The solution can be determined by solving
the following optimization problem.

Stochastic Formulation:

SP ({c̃ij}) :

max α (5a)
s.t. {xij} ∈ F (5b)

Pr(T̃ < τ) ≥ α (5c)

For discrete distribution of {c̃ij} and small-size problem
instance, Problem (5) can be solved to optimality. But for
large-size problems or {c̃ij} with continuous distribution,
Problem (5) is hard to solve to optimality and is usually solved
approximately. Even to solve an approximation of Problem (5)
requires the knowledge of distribution functions of uncertain
factors which is not always available. To ease the dependence
on the distribution function, we propose an approach using
robust optimization techniques in the rest of this section.

B. Robust Optimization formulation

In this section, we describe a Robust Optimization formu-
lation for path determination. There are two major benefits
of this new formulation. First, it is computationally amiable
and its solution can be obtained efficiently by leverage on
existing algorithms. Second, it does not require the distribution
information of the uncertainty, and only make use of its
reference point and bounds. Therefore, the performance of the
solution is quite robust against distributional ambiguity.

First we define an adjustable uncertainty set for each c̃ij
as follows,

Cij(γ) := {cij |γ(cij − ĉij) ≤ cij − ĉij ≤ γ(c̄ij − ĉij)}, (6)

where γ ∈ [0, 1]. Clearly, Cij(0) is a singleton containing the
reference point only, Cij(1) is the full support set of c̃ij , and
Cij(γ) is a set in between when 0 < γ < 1.

To achieve a reliable travel time that is less than the target
τ , we would naturally like to solve the following optimization



problem.

max
0≤γ≤1

γ (7a)

s.t. {xij} ∈ F (7b)

T̃ < τ, ∀c̃ij ∈ Cij(γ), ∀(i, j) ∈ A (7c)

Given the definition of T̃ in (3) and Cij(γ) in (6), it can
be observed that T̃ achieve its largest value when c̃ij =
ĉij + γ(c̄ij − ĉij). Therefore, Constraint (7c) is equivalent to∑

(i,j)∈A (ĉij + γ(c̄ij − ĉij))xij < τ , and the deterministic
equivalence of Problem (7) is the following.

Robust Formulation

RO({ĉij , c̄ij}) :

γ∗ = max
0≤γ≤1

γ (8a)

s.t. {xij} ∈ F (8b)∑
(i,j)∈A

(ĉij + γ(c̄ij − ĉij))xij < τ (8c)

Problem (8) is a Mixed Integer Programming (MIP) problem
with quadratic constraints and the number of binary variables is
equivalent to the number of arcs in the network. And the Mixed
Integer Linear Programming (MILP) equivalence of Problem
(8) is shown in Formulation (9). In this formulation, M is a
sufficiently large number.

Mixed Integer Linear Programming

MILP ({ĉij , c̄ij}) :

γ∗ = max
0≤γ≤1

γ (9a)

s.t. {xij} ∈ F (9b)∑
(i,j)∈A

λij < τ (9c)

λij ≥ ĉij + γ (c̄ij − ĉij) +M (xij − 1)
(9d)

λij ≥ 0, ∀(i, j) ∈ A (9e)

It may take a while to solve the problem if the network is
relatively large since Integer Programming is an NP-complete
problem. However, it is worthy pointing out that Problem (8)
can be solved by performing a binary search over γ and solving
DP problem (4) repeatedly. The procedure is summarized in
Algorithm 1.

In Algorithm 1, the travel time target τ and the maximal
number of iteration imax are the input parameters, and the
procedure TROBS(τ, imax) returns the value of γ∗ with
arbitrary accuracy. For example, when imax = 10 the accuracy
is 1/210 which is less than 0.001. But in practice, 7 is a good
enough choice for imax.

Algorithm 1 Binary search for solution of Problem (8)

1: procedure TROBS(τ , imax)
2: LB = 0, UB = 1, i = 1
3: if optimum of Problem (4) is less than τ then Return

infeasible
4: end if
5: if optimum of Problem (4) with ĉij replaced by ĉij +
c̄ij − ĉij is no less than τ then Return 1

6: end if
7: while i ≤ imax do
8: if optimum of Problem (4) with ĉij replaced by
ĉij + (c̄ij − ĉij) ∗ (UB − LB)/2 is no less than τ then
LB =(UB+LB)/2

9: else UB =(UB+LB)/2
10: end if
11: i = i+ 1
12: end while
13: Return LB
14: end procedure

IV. NUMERICAL EXPERIMENT

In this section, the proposed approach and algorithm is
illustrated by numerical examples. Its advantage over other
approaches is also shown by numerical experiments. Through-
out this section, all the codes are implemented using R 3.1.3
and all the experiments are run on a laptop with an Intel Core
i5-4300M CPU, 8GB ram and 64-bit Windows 8 OS.

In order to have a deep insight of our proposed method,
numerical experiments is employed using R language. We
generate a directed lattice graph with randomly generated
weights from 10 to 25. And the uncertainty for every edge
is 20% to 50% of the weight for corresponding edge, which
means the upper bound and the lower bound are simply the
weight plus or minus the corresponding uncertainty. So it
is worth noting that the uncertainty is not the same as the
definition of variance. The generated graph is shown in Fig. 2a.
Vertex 1 is the departure point, and Vertex 25 is the destination
point. In this specific instance, if we formulate this routing
problem simply as a deterministic optimization problem (i.e.,
ignoring the weight uncertainty), the route obtained is shown
in Fig 2b. If we formulate this VRP as a robust optimization
problem defined in Problem 8, the problem should be much
more complicated. The results using Algorithm 1 and Mixed
Integer Linear Programming (depicted in Problem 9) are listed
in Fig 2c and Fig 2d, respectively.

A. Performance of binary search algorithm

Based on this instance, the routes calculated by DP and
TRO are totally different from each other. During numerical
experiments, the routes obtained through binary search and
MILP are always keeping the same, indicating that N = 7
is sufficient enough to find a route which is the exact the
same route as the one calculated by MILP. But for problems
in real world, the problem size is fairly big, and it is not
practical to use MILP method to tackle these problems since
the time complexity of MILP is NP-Complete. However, the
time complexity of binary search, is simply several times using
Dijkstra’s algorithm (and the time complexity for Dijstra’s
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Fig. 2: Routes

algorithm is O (|E|+ |V | log |V |) based on min-priority queue
implemented by a Fibonacci heap).

B. Robustness of travel time

1. distribution of travel times under TRO and DP In order to
simulate real world routing problems, we generate 10 samples
for each edge according to symmetric beta distribution, with
randomly generated parameter α = β ∈ [0, 2] . Following Fig.
4 shows a simulation of the distribution of the routing result.
The green curve shows the route obtained by solving Problem
4, and the red curve represents the distribution calculated using
binary search. From the figure, we could see that, although the
mean travel time of red route is smaller than the one of the
green route, the probability of not exceeding the travel time
target for the red route is apparently bigger than the one for
the green route, showing the robustness of the route calculated
by our proposed method.

V. CONCLUSION

The conclusion goes here.
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